
Edward E Farmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ACA pumps maintain leaf excitability during herbivore onslaught. Current Biology, 2022, 32, 2517-2528.e6.	3.9	12
2	Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 2021, 7, eabg4298.	10.3	45
3	Jasmonate Precursor Biosynthetic Enzymes LOX3 and LOX4 Control Wound-Response Growth Restriction. Plant Physiology, 2020, 184, 1172-1180.	4.8	21
4	Wound―and mechanostimulated electrical signals control hormone responses. New Phytologist, 2020, 227, 1037-1050.	7.3	123
5	Plant surface metabolites as potent antifungal agents. Plant Physiology and Biochemistry, 2020, 150, 39-48.	5.8	9
6	Jasmonates: what ALLENE OXIDE SYNTHASE does for plants. Journal of Experimental Botany, 2019, 70, 3373-3378.	4.8	40
7	Regulatory Oxylipins Anno 2019: Jasmonates Galore in the Plant Oxylipin Research Community. Plant and Cell Physiology, 2019, 60, 2609-2612.	3.1	5
8	Singleâ€cell damage elicits regional, nematodeâ€restricting ethylene responses in roots. EMBO Journal, 2019, 38, .	7.8	79
9	<i>Arabidopsis</i> H ⁺ -ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20226-20231.	7.1	62
10	Insect-damaged <i>Arabidopsis</i> moves like wounded <i>Mimosa pudica</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26066-26071.	7.1	32
11	Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10178-10183.	7.1	228
12	Emerging Jasmonate Transporters. Molecular Plant, 2017, 10, 659-661.	8.3	19
13	Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. New Phytologist, 2017, 216, 1161-1169.	7.3	43
14	Paired Hierarchical Organization of 13-Lipoxygenases in Arabidopsis. Plants, 2016, 5, 16.	3.5	44
15	Membranes as Structural Antioxidants. Journal of Biological Chemistry, 2016, 291, 13005-13013.	3.4	50
16	Mimicry in plants. Current Biology, 2016, 26, R784-R785.	3.9	13
17	Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 84, 1152-1166.	5.7	28
18	Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genetics, 2015, 11, e1005300.	3.5	106

EDWARD E FARMER

#	Article	IF	CITATIONS
19	A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications, 2015, 6, 6043.	12.8	130
20	Axial and radial oxylipin transport. Plant Physiology, 2015, 169, pp.01104.2015.	4.8	61
21	The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytologist, 2014, 204, 282-288.	7.3	105
22	Realâ€ŧime, <i>inÂvivo</i> intracellular recordings of caterpillarâ€induced depolarization waves in sieve elements using aphid electrodes. New Phytologist, 2014, 203, 674-684.	7.3	107
23	Measuring surface potential changes on leaves. Nature Protocols, 2014, 9, 1997-2004.	12.0	27
24	GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature, 2013, 500, 422-426.	27.8	625
25	Four 13â€lipoxygenases contribute to rapid jasmonate synthesis in wounded <i>Arabidopsis thaliana</i> leaves: a role for lipoxygenase 6 in responses to longâ€distance wound signals. New Phytologist, 2013, 197, 566-575.	7.3	187
26	ROS-Mediated Lipid Peroxidation and RES-Activated Signaling. Annual Review of Plant Biology, 2013, 64, 429-450.	18.7	574
27	On the cellular site of twoâ€pore channel TPC 1 action in the Poaceae. New Phytologist, 2013, 200, 663-674.	7.3	29
28	Role of NINJA in root jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15473-15478.	7.1	130
29	A Regulatory Network for Coordinated Flower Maturation. PLoS Genetics, 2012, 8, e1002506.	3.5	204
30	Effects of fou8/fry1 Mutation on Sulfur Metabolism: Is Decreased Internal Sulfate the Trigger of Sulfate Starvation Response?. PLoS ONE, 2012, 7, e39425.	2.5	57
31	Inducible Malondialdehyde Pools in Zones of Cell Proliferation and Developing Tissues in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8954-8962.	3.4	32
32	Plants and tortoises: mutations in the <i>Arabidopsis</i> jasmonate pathway increase feeding in a vertebrate herbivore. Molecular Ecology, 2012, 21, 2534-2541.	3.9	12
33	Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Molecular Biology, 2011, 75, 25-33.	3.9	146
34	Jasmonate Controls Polypeptide Patterning in Undamaged Tissue in Wounded Arabidopsis Leaves Â. Plant Physiology, 2011, 156, 1797-1807.	4.8	64
35	Chloroplastic Phosphoadenosine Phosphosulfate Metabolism Regulates Basal Levels of the Prohormone Jasmonic Acid in Arabidopsis Leaves. Plant Physiology, 2010, 152, 1335-1345.	4.8	62
36	Jasmonate Biochemical Pathway. Science Signaling, 2010, 3, cm3.	3.6	110

Edward E Farmer

#	Article	IF	CITATIONS
37	Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63, 811-822.	5.7	198
38	Guard Cell-Specific Calcium Sensitivity of High Density and Activity SV/TPC1 Channels. Plant and Cell Physiology, 2010, 51, 1548-1554.	3.1	38
39	Jasmonates. The Arabidopsis Book, 2010, 8, e0129.	0.5	120
40	<i>Arabidopsis</i> Jasmonate Signaling Pathway. Science Signaling, 2010, 3, cm4.	3.6	96
41	Detritivorous crustaceans become herbivores on jasmonate-deficient plants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 935-940.	7.1	41
42	Nonenzymatic Oxidation of Trienoic Fatty Acids Contributes to Reactive Oxygen Species Management in Arabidopsis. Journal of Biological Chemistry, 2009, 284, 1702-1708.	3.4	97
43	Velocity Estimates for Signal Propagation Leading to Systemic Jasmonic Acid Accumulation in Wounded Arabidopsis. Journal of Biological Chemistry, 2009, 284, 34506-34513.	3.4	213
44	The <i>fou2</i> mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. Plant Journal, 2009, 58, 715-723.	5.7	115
45	UPLC–TOF-MS for plant metabolomics: A sequential approach for wound marker analysis in Arabidopsis thaliana. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 871, 261-270.	2.3	96
46	Screening for Wound-induced Oxylipins inArabidopsis thaliana by Differential HPLC-APCI/MS Profiling of Crude Leaf Extracts and Subsequent Characterisation by Capillary-scale NMR. Phytochemical Analysis, 2008, 19, 198-205.	2.4	23
47	Spatial and Temporal Dynamics of Jasmonate Synthesis and Accumulation in Arabidopsis in Response to Wounding. Journal of Biological Chemistry, 2008, 283, 16400-16407.	3.4	293
48	Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology, 2008, 6, e230.	5.6	803
49	Genetic Removal of Tri-unsaturated Fatty Acids Suppresses Developmental and Molecular Phenotypes of an Arabidopsis Tocopherol-deficient Mutant. Journal of Biological Chemistry, 2007, 282, 35749-35756.	3.4	45
50	Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants. Plant Cell, 2007, 18, 3706-3720.	6.6	168
51	The fou2 Gain-of-Function Allele and the Wild-Type Allele of Two Pore Channel 1 Contribute to Different Extents or by Different Mechanisms to Defense Gene Expression in Arabidopsis. Plant and Cell Physiology, 2007, 48, 1775-1789.	3.1	61
52	A Downstream Mediator in the Growth Repression Limb of the Jasmonate Pathway. Plant Cell, 2007, 19, 2470-2483.	6.6	606
53	Development of a twoâ€step screening ESIâ€TOFâ€MS method for rapid determination of significant stressâ€induced metabolome modifications in plant leaf extracts: The wound response in <i>Arabidopsis thaliana</i> as a case study. Journal of Separation Science, 2007, 30, 2268-2278.	2.5	46
54	Jasmonate perception machines. Nature, 2007, 448, 659-660.	27.8	84

EDWARD E FARMER

#	Article	IF	CITATIONS
55	A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant Journal, 2007, 49, 889-898.	5.7	145
56	Reactive electrophile species. Current Opinion in Plant Biology, 2007, 10, 380-386.	7.1	253
57	Oxylipin analysis methods. Plant Journal, 2006, 45, 472-489.	5.7	89
58	A Conserved Transcript Pattern in Response to a Specialist and a Generalist Herbivorewâ f ž. Plant Cell, 2004, 16, 3132-3147.	6.6	470
59	Selective and powerful stress gene expression inArabidopsisin response to malondialdehyde. Plant Journal, 2004, 37, 877-888.	5.7	268
60	Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Molecular Biology, 2004, 55, 579-594.	3.9	74
61	Reactive electrophile species activate defense gene expression in Arabidopsis. Plant Journal, 2003, 34, 205-216.	5.7	244
62	Surface-to-air signals. Nature, 2001, 411, 854-856.	27.8	290
63	Differential Gene Expression in Response to Mechanical Wounding and Insect Feeding in Arabidopsis. Plant Cell, 2000, 12, 707-719.	6.6	1,136
64	Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant Journal, 2000, 24, 467-476.	5.7	181
65	A rapid assay for the coupled cell free generation of oxylipins. Phytochemistry, 1998, 47, 599-604.	2.9	28
66	Fatty acid signalling in plants and their associated microorganisms. Plant Molecular Biology, 1994, 26, 1423-1437.	3.9	169
67	Regulation of Expression of Proteinase Inhibitor Genes by Methyl Jasmonate and Jasmonic Acid. Plant Physiology, 1992, 98, 995-1002.	4.8	428