
## Madhab C Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540630/publications.pdf Version: 2024-02-01



MADHAR C DAS

| #  | Article                                                                                                                                                                                                                                                                                    | IF     | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1  | Emerging microporous HOF materials to address global energy challenges. Joule, 2022, 6, 22-27.                                                                                                                                                                                             | 11.7   | 43        |
| 2  | Superprotonic Conductivity of MOFs and Other Crystalline Platforms Beyond 10 <sup>â^'1</sup> S<br>cm <sup>â^'1</sup> . Advanced Functional Materials, 2021, 31, 2101584.                                                                                                                   | 7.8    | 93        |
| 3  | Porous Anionic Co(II) Metalâ€Organic Framework, with a High Density of Amino Groups, as a Superior<br>Luminescent Sensor for Turnâ€on Al(III) Detection. Chemistry - A European Journal, 2021, 27, 11804-11810.                                                                            | 1.7    | 41        |
| 4  | C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.                                                                                                                      | 9.5    | 64        |
| 5  | Covalentâ€Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 2021, 11,<br>2102300.                                                                                                                                                                                 | 10.2   | 106       |
| 6  | Proton-Conducting Hydrogen-Bonded Organic Frameworks. ACS Energy Letters, 2021, 6, 4431-4453.                                                                                                                                                                                              | 8.8    | 92        |
| 7  | A Phosphateâ€Based Silver–Bipyridine 1D Coordination Polymer with Crystallized Phosphoric Acid as<br>Superprotonic Conductor. Chemistry - A European Journal, 2020, 26, 4607-4612.                                                                                                         | 1.7    | 24        |
| 8  | A 2D Mg(II)-MOF with High Density of Coordinated Waters as Sole Intrinsic Proton Sources for Ultrahigh Superprotonic Conduction. , 2020, 2, 1343-1350.                                                                                                                                     |        | 37        |
| 9  | Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly<br>Efficient CO <sub>2</sub> Separation under Dry and Wet Environments through Direct<br>CO <sub>2</sub> –Sulfone Interactions. ACS Applied Materials & Interfaces, 2020, 12, 41177-41184. | 4.0    | 30        |
| 10 | A "Thermodynamically Stable―2D Nickel Metal–Organic Framework over a Wide pH Range with<br>Scalable Preparation for Efficient C <sub>2</sub> s over C <sub>1</sub> Hydrocarbon Separations.<br>Chemistry - A European Journal, 2020, 26, 12624-12631.                                      | 1.7    | 28        |
| 11 | A Co( <scp>ii</scp> )-coordination polymer for ultrahigh superprotonic conduction: an atomistic<br>insight through molecular simulations and QENS experiments. Journal of Materials Chemistry A, 2020,<br>8, 7847-7853.                                                                    | 5.2    | 29        |
| 12 | Two Closely Related Zn(II)-MOFs for Their Large Difference in CO <sub>2</sub> Uptake Capacities and Selective CO <sub>2</sub> Sorption. Inorganic Chemistry, 2020, 59, 7056-7066.                                                                                                          | 1.9    | 35        |
| 13 | A Microporous Co-MOF for Highly Selective CO <sub>2</sub> Sorption in High Loadings Involving Aryl<br>C–H··Aô-Oâ•€â•O Interactions: Combined Simulation and Breakthrough Studies. Inorganic Chemistry, 2019, 5<br>11553-11560.                                                             | 58,1.9 | 23        |
| 14 | Three-Dimensional Co(II)-Metal–Organic Frameworks with Varying Porosities and Open Metal Sites<br>toward Multipurpose Heterogeneous Catalysis under Mild Conditions. Crystal Growth and Design,<br>2019, 19, 5343-5353.                                                                    | 1.4    | 41        |
| 15 | Two 2D microporous MOFs based on bent carboxylates and a linear spacer for selective CO <sub>2</sub> adsorption. CrystEngComm, 2019, 21, 535-543.                                                                                                                                          | 1.3    | 13        |
| 16 | Metal–Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic<br>Conductivities of 10 <sup>â~'2</sup> â€S cm <sup>â~'1</sup> or Higher. Chemistry - A European Journal, 2<br>25, 6259-6269.                                                                         | 01197  | 117       |
| 17 | Frontispiece: Metal–Organic Frameworks and Other Crystalline Materials for Ultrahigh<br>Superprotonic Conductivities of 10 <sup>â^'2</sup> â€S cm <sup>â^'1</sup> or Higher. Chemistry - A Euro<br>Journal, 2019, 25, .                                                                    | реви   | 0         |
| 18 | Three Co(II) Metal–Organic Frameworks with Diverse Architectures for Selective Gas Sorption and<br>Magnetic Studies. Inorganic Chemistry, 2019, 58, 6246-6256.                                                                                                                             | 1.9    | 34        |

MADHAB C DAS

| #  | Article                                                                                                                                                                                                                                                                              | IF                    | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 19 | Metalo Hydrogenâ€Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for<br>Protonic Conduction. Chemistry - A European Journal, 2019, 25, 1691-1695.                                                                                                            | 1.7                   | 92        |
| 20 | Polycarboxylateâ€Templated Coordination Polymers: Role of Templates for Superprotonic<br>Conductivities of up to 10 <sup>â^'1</sup> â€S cm <sup>â^'1</sup> . Angewandte Chemie - International Ec<br>2018, 57, 6662-6666.                                                            | littan,               | 153       |
| 21 | Polycarboxylateâ€Templated Coordination Polymers: Role of Templates for Superprotonic<br>Conductivities of up to 10 <sup>â^'1</sup> â€S cm <sup>â^'1</sup> . Angewandte Chemie, 2018, 130, 677                                                                                       | 2- <del>6.9</del> 76. | 88        |
| 22 | A 3D Microporous MOF with <i>mab</i> Topology for Selective CO <sub>2</sub> Adsorption and Separation. ChemistrySelect, 2018, 3, 917-921.                                                                                                                                            | 0.7                   | 15        |
| 23 | A Moistureâ€Stable 3D Microporous Co <sup>II</sup> â€Metal–Organic Framework with Potential for<br>Highly Selective CO <sub>2</sub> Separation under Ambient Conditions. Chemistry - A European<br>Journal, 2018, 24, 5982-5986.                                                     | 1.7                   | 37        |
| 24 | Three isostructural azo-functionalized 3D Cd(II)-coordination polymers for solvent dependent photoluminescence study. Polyhedron, 2018, 153, 115-121.                                                                                                                                | 1.0                   | 5         |
| 25 | A Trifunctional Luminescent 3D Microporous MOF with Potential for CO <sub>2</sub> Separation,<br>Selective Sensing of a Metal Ion, and Recognition of a Small Organic Molecule. European Journal of<br>Inorganic Chemistry, 2018, 2018, 2785-2792.                                   | 1.0                   | 28        |
| 26 | Two azo-functionalized luminescent 3D Cd( <scp>ii</scp> ) MOFs for highly selective detection of Fe <sup>3+</sup> and Al <sup>3+</sup> . New Journal of Chemistry, 2018, 42, 12865-12871.                                                                                            | 1.4                   | 69        |
| 27 | A Water-Stable Twofold Interpenetrating Microporous MOF for Selective CO <sub>2</sub> Adsorption and Separation. Inorganic Chemistry, 2017, 56, 13991-13997.                                                                                                                         | 1.9                   | 88        |
| 28 | A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of<br>CO <sub>2</sub> from CO <sub>2</sub> –N <sub>2</sub> and CO <sub>2</sub> –CH <sub>4</sub> gas<br>mixtures with high CO <sub>2</sub> loading. Dalton Transactions, 2017, 46, 15280-15286. | 1.6                   | 46        |
| 29 | A new set of Cd( <scp>ii</scp> )-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO <sub>2</sub> and cationic dyes. Dalton Transactions, 2017, 46, 9901-9911.                                          | 1.6                   | 55        |
| 30 | Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation. CrystEngComm, 2016, 18, 4323-4335.                                                                     | 1.3                   | 30        |
| 31 | Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous<br>Mixed Metal–Organic Framework for Highly Selective Gas Adsorption. Inorganic Chemistry, 2012, 51,<br>4947-4953.                                                                     | 1.9                   | 83        |
| 32 | Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal<br>Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small<br>Molecules. Journal of the American Chemical Society, 2012, 134, 8703-8710.     | 6.6                   | 326       |
| 33 | A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 2011, 47, 11715.                                                                                                                 | 2.2                   | 319       |
| 34 | Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nature Communications, 2011, 2, 204.                                                                                                              | 5.8                   | 504       |
| 35 | A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of<br>Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A<br>European Journal, 2011, 17, 7817-7822.                                             | 1.7                   | 137       |
| 36 | Functional Mixed Metal–Organic Frameworks with Metalloligands. Angewandte Chemie -<br>International Edition, 2011, 50, 10510-10520.                                                                                                                                                  | 7.2                   | 384       |

MADHAB C DAS

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of Bulkiness on Reversible Substitution Reaction at Mn <sup>II</sup> Center with Concomitant<br>Movement of the Lattice DMF: Observation through Singleâ€Crystal to Singleâ€Crystal Fashion. Chemistry<br>- A European Journal, 2010, 16, 5070-5077. | 1.7 | 31        |
| 38 | Diversity of binding of sulfate and nitrate anions with laterally asymmetric aza cryptands.<br>CrystEngComm, 2010, 12, 413-419.                                                                                                                             | 1.3 | 13        |
| 39 | Binding of various anions in laterally non-symmetric aza-oxa cryptands through H-bonds:<br>characterization of water clusters of different nuclearity. CrystEngComm, 2010, 12, 2967.                                                                        | 1.3 | 17        |
| 40 | Helicity-induced two-layered Cd(II) coordination polymers built with different kinked dicarboxylates and an organodiimidazole. Polyhedron, 2009, 28, 3923-3928.                                                                                             | 1.0 | 14        |
| 41 | Supramolecular association of water molecules forming discrete clusters in the voids of coordination polymers. Current Opinion in Solid State and Materials Science, 2009, 13, 76-90.                                                                       | 5.6 | 40        |
| 42 | A Porous Coordination Polymer Exhibiting Reversible Single-Crystal to Single-Crystal Substitution<br>Reactions at Mn(II) Centers by Nitrile Guest Molecules. Journal of the American Chemical Society, 2009,<br>131, 10942-10949.                           | 6.6 | 180       |
| 43 | Coordination polymers with pyridine-2,4,6-tricarboxylic acid and alkaline-earth/lanthanide/transition metals: synthesis and X-ray structures. Dalton Transactions, 2009, , 1644.                                                                            | 1.6 | 85        |
| 44 | Halide binding in laterally non-symmetric aza-oxa cryptands through N/O/C–Hâ√halide interactions with characterization of small water clusters. Dalton Transactions, 2009, , 6496.                                                                          | 1.6 | 16        |
| 45 | Molecular Ice with Hybrid Water–Bromide Network around a Cryptand with a Bromide Ion Included in the Cavity to Form a Host-within-a-Host-Like Structure. European Journal of Inorganic Chemistry, 2007, 1229-1232.                                          | 1.0 | 30        |