
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540612/publications.pdf Version: 2024-02-01

TENC FEL

#	Article	IF	CITATIONS
1	SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensors and Actuators B: Chemical, 2014, 190, 472-478.	4.0	429
2	Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors and Actuators B: Chemical, 2014, 202, 272-278.	4.0	322
3	Three-Dimensional Hierarchical Flowerlike α-Fe ₂ O ₃ Nanostructures: Synthesis and Ethanol-Sensing Properties. ACS Applied Materials & Interfaces, 2011, 3, 4689-4694.	4.0	214
4	Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 6483-6490.	4.0	201
5	Construction of ZnO/SnO ₂ Heterostructure on Reduced Graphene Oxide for Enhanced Nitrogen Dioxide Sensitive Performances at Room Temperature. ACS Sensors, 2019, 4, 2048-2057.	4.0	142
6	Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties. Journal of Materials Chemistry, 2012, 22, 4767.	6.7	115
7	Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sensors and Actuators B: Chemical, 2018, 266, 812-822.	4.0	109
8	Aggregation induced emission and amplified explosive detection of tetraphenylethylene-substituted polycarbazoles. Polymer Chemistry, 2014, 5, 4048.	1.9	104
9	Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting. ACS Applied Materials & Interfaces, 2017, 9, 28002-28009.	4.0	104
10	Zinc oxide core–shell hollow microspheres with multi-shelled architecture for gas sensor applications. Journal of Materials Chemistry, 2011, 21, 19331.	6.7	100
11	Investigation of Microstructure Effect on NO ₂ Sensors Based on SnO ₂ Nanoparticles/Reduced Graphene Oxide Hybrids. ACS Applied Materials & Interfaces, 2018, 10, 41773-41783.	4.0	100
12	High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sensors and Actuators B: Chemical, 2017, 242, 269-279.	4.0	99
13	Theoretical Studies of Blue-Emitting Iridium Complexes with Different Ancillary Ligands. Journal of Physical Chemistry A, 2008, 112, 8387-8393.	1.1	94
14	Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection. Journal of Colloid and Interface Science, 2019, 541, 249-257.	5.0	94
15	Excellent Humidity Sensor Based on LiCl Loaded Hierarchically Porous Polymeric Microspheres. ACS Applied Materials & Interfaces, 2016, 8, 25529-25534.	4.0	88
16	Enhanced acetone sensing performances of hierarchical hollow Au-loaded NiO hybrid structures. Sensors and Actuators B: Chemical, 2012, 161, 178-183.	4.0	84
17	Synthesis of core–shell α-Fe ₂ O ₃ @NiO nanofibers with hollow structures and their enhanced HCHO sensing properties. Journal of Materials Chemistry A, 2015, 3, 5635-5641.	5.2	83
18	Flexible humidity sensor based on modified cellulose paper. Sensors and Actuators B: Chemical, 2021, 339, 129879.	4.0	83

#	Article	IF	CITATIONS
19	Humidity sensors based on Li-loaded nanoporous polymers. Sensors and Actuators B: Chemical, 2014, 190, 523-528.	4.0	81
20	Colorâ€stable White Electroluminescence Based on a Crossâ€linked Network Film Prepared by Electrochemical Copolymerization. Advanced Materials, 2010, 22, 2702-2705.	11.1	78
21	Ordered mesoporous Co3O4 for high-performance toluene sensing. Sensors and Actuators B: Chemical, 2014, 197, 342-349.	4.0	78
22	Controllable synthesis and HCHO-sensing properties of In2O3 micro/nanotubes with different diameters. Sensors and Actuators B: Chemical, 2014, 198, 180-187.	4.0	78
23	Effect of Cation Substitution on the Gas-Sensing Performances of Ternary Spinel MCo ₂ O ₄ (M = Mn, Ni, and Zn) Multishelled Hollow Twin Spheres. ACS Applied Materials & Interfaces, 2019, 11, 28023-28032.	4.0	76
24	Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance. Sensors and Actuators B: Chemical, 2012, 164, 90-95.	4.0	73
25	Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sensors and Actuators B: Chemical, 2013, 176, 323-329.	4.0	73
26	Multilayer Polymer Stacking by In Situ Electrochemical Polymerization for Color‧table White Electroluminescence. Advanced Materials, 2011, 23, 527-530.	11.1	68
27	Highly-efficient solution-processed OLEDs based on new bipolar emitters. Chemical Communications, 2010, 46, 3923.	2.2	67
28	Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sensors and Actuators B: Chemical, 2020, 304, 127270.	4.0	66
29	Proton-Conductive Gas Sensor: a New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath. ACS Sensors, 2020, 5, 346-352.	4.0	66
30	White organic light-emitting devices with a phosphorescent multiple emissive layer. Applied Physics Letters, 2006, 89, 043504.	1.5	65
31	α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone. Sensors and Actuators B: Chemical, 2020, 318, 128191.	4.0	65
32	A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sensors and Actuators A: Physical, 2019, 287, 93-101.	2.0	64
33	Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. Journal of Colloid and Interface Science, 2020, 560, 284-292.	5.0	63
34	Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing. Journal of Colloid and Interface Science, 2018, 514, 599-608.	5.0	60
35	Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Journal of Materials Chemistry, 2009, 19, 6143.	6.7	58
36	Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route. Solid-State Electronics, 2012, 76, 91-94.	0.8	57

#	Article	IF	CITATIONS
37	Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO2 sensing. Sensors and Actuators B: Chemical, 2018, 260, 508-518.	4.0	55
38	Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sensors and Actuators B: Chemical, 2012, 171-172, 1180-1185.	4.0	54
39	Oxygen vacancy modulation of commercial SnO2 by an organometallic chemistry-assisted strategy for boosting acetone sensing performances. Sensors and Actuators B: Chemical, 2019, 290, 493-502.	4.0	52
40	Synthesis of rattle-type SnO2 structures with porous shells. Journal of Materials Chemistry, 2012, 22, 18111.	6.7	51
41	Core–shell Co ₃ O ₄ /α-Fe ₂ O ₃ heterostructure nanofibers with enhanced gas sensing properties. RSC Advances, 2015, 5, 36340-36346.	1.7	51
42	A class of hierarchical nanostructures: ZnO surface-functionalized TiO2 with enhanced sensing properties. RSC Advances, 2013, 3, 3131.	1.7	49
43	Ring-like PdO–NiO with lamellar structure for gas sensor application. Journal of Materials Chemistry, 2012, 22, 12453.	6.7	48
44	Capacitive humidity sensors based on mesoporous silica and poly(3,4-ethylenedioxythiophene) composites. Journal of Colloid and Interface Science, 2020, 565, 592-600.	5.0	46
45	Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. Journal of Applied Polymer Science, 2014, 131, .	1.3	44
46	Humidity sensors based on MCM-41/polypyrrole hybrid film via in-situ polymerization. Sensors and Actuators B: Chemical, 2018, 277, 584-590.	4.0	44
47	A dew sensor based on modified carbon black and polyvinyl alcohol composites. Sensors and Actuators B: Chemical, 2014, 192, 658-663.	4.0	43
48	Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sensors and Actuators B: Chemical, 2020, 320, 128318.	4.0	42
49	Rational design and tunable synthesis of Co3O4 nanoparticle-incorporating into In2O3 one-dimensional ribbon as effective sensing material for gas detection. Sensors and Actuators B: Chemical, 2020, 310, 127695.	4.0	40
50	Humidity-activated ammonia sensor with excellent selectivity for exhaled breath analysis. Sensors and Actuators B: Chemical, 2021, 334, 129625.	4.0	40
51	Biocompatible Multifunctional E-Skins with Excellent Self-Healing Ability Enabled by Clean and Scalable Fabrication. Nano-Micro Letters, 2021, 13, 200.	14.4	39
52	A new kind of peripheral carbazole substituted ruthenium(II) complexes for electrochemical deposition organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 3941.	6.7	38
53	Humidity sensing properties of LiCl-loaded porous polymers with good stability and rapid response and recovery. Sensors and Actuators B: Chemical, 2014, 199, 1-6.	4.0	38
54	lridium complex grafted to 3,6 arbazoleâ€ <i>altâ€</i> tetraphenylsilane copolymers for blue electrophosphorescence. Journal of Polymer Science Part A, 2010, 48, 1859-1865.	2.5	37

#	Article	lF	CITATIONS
55	Preparation of organic-inorganic hybrid polymers and their humidity sensing properties. Sensors and Actuators B: Chemical, 2017, 242, 1108-1114.	4.0	37
56	A flexible humidity sensor based on self-supported polymer film. Sensors and Actuators B: Chemical, 2022, 358, 131438.	4.0	36
57	LiCl loaded cross-linked polymer composites by click reaction for humidity sensing. Sensors and Actuators B: Chemical, 2017, 253, 361-367.	4.0	35
58	Humidity sensor based on a cross-linked porous polymer with unexpectedly good properties. RSC Advances, 2014, 4, 21429.	1.7	34
59	A guest/host composite of Fe(NO3)3/nanoporous polytriphenylamine assembly for humidity sensor. Sensors and Actuators B: Chemical, 2016, 222, 440-446.	4.0	34
60	In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. Sensors and Actuators B: Chemical, 2017, 243, 1231-1239.	4.0	34
61	Humidity sensor based on solution processible microporous silica nanoparticles. Sensors and Actuators B: Chemical, 2018, 266, 131-138.	4.0	34
62	A wide band gap polymer derived from 3,6 arbazole and tetraphenylsilane as host for green and blue phosphorescent complexes. Journal of Polymer Science Part A, 2009, 47, 4784-4792.	2.5	33
63	Electrochemical polymerization films for highly efficient electroluminescent devices and RGB color pixel. Electrochemistry Communications, 2010, 12, 553-556.	2.3	33
64	Flexible Piezoresistive Sensors based on Conducting Polymer-coated Fabric Applied to Human Physiological Signals Monitoring. Journal of Bionic Engineering, 2020, 17, 55-63.	2.7	33
65	Conjugated polymers containing tetraphenylethylene in the backbones and side-chains for highly sensitive TNT detection. RSC Advances, 2018, 8, 5760-5767.	1.7	32
66	High-Performance QCM Humidity Sensors Using Acidized-Multiwalled Carbon Nanotubes as Sensing Film. IEEE Sensors Journal, 2018, 18, 5278-5283.	2.4	32
67	Study on a paper-based piezoresistive sensor applied to monitoring human physiological signals. Sensors and Actuators A: Physical, 2019, 292, 66-70.	2.0	32
68	Enhanced ethanol sensing properties of NiO-doped SnO2 polyhedra. New Journal of Chemistry, 2012, 36, 1003.	1.4	31
69	Organic-inorganic hybrid materials based on mesoporous silica derivatives for humidity sensing. Sensors and Actuators B: Chemical, 2017, 248, 803-811.	4.0	31
70	Optical and electronic properties of phosphorescent iridium(III) complexes with phenylpyrazole and ancillary ligands. Synthetic Metals, 2009, 159, 113-118.	2.1	30
71	Stable cross-linked amphiphilic polymers from a one-pot reaction for application in humidity sensors. Sensors and Actuators B: Chemical, 2016, 227, 649-654.	4.0	30
72	Highly sensitive and chemically stable NH3 sensors based on an organic acid-sensitized cross-linked hydrogel for exhaled breath analysis. Biosensors and Bioelectronics, 2021, 191, 113459.	5.3	30

#	Article	IF	CITATIONS
73	A humidity sensor based on ionic liquid modified metal organic frameworks for low humidity detection. Sensors and Actuators B: Chemical, 2022, 355, 131136.	4.0	30
74	Polymeric humidity sensors with nonlinear response: Properties and mechanism investigation. Journal of Applied Polymer Science, 2013, 130, 2056-2061.	1.3	29
75	Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures. Journal of Colloid and Interface Science, 2019, 557, 673-682.	5.0	29
76	Electrochemical chloramphenicol sensors-based on trace MoS2 modified carbon nanomaterials: Insight into carbon supports. Journal of Alloys and Compounds, 2021, 872, 159687.	2.8	29
77	Boosting room-temperature ppb-level NO2 sensing over reduced graphene oxide by co-decoration of α-Fe2O3 and SnO2 nanocrystals. Journal of Colloid and Interface Science, 2022, 612, 689-700.	5.0	29
78	Crosslinked fluorescent conjugated polymer nanoparticles for high performance explosive sensing in aqueous media. Dyes and Pigments, 2018, 159, 128-134.	2.0	28
79	A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta, 2022, 242, 123289.	2.9	28
80	Tuning the Emission Color of Iridium(III) Complexes with Ancillary Ligands: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2009, 2009, 2407-2414.	1.0	27
81	Bipolar Host Molecules for Efficient Blue Electrophosphorescence: A Quantum Chemical Design. Journal of Physical Chemistry A, 2010, 114, 965-972.	1.1	26
82	Humidity sensor using a Li-loaded microporous organic polymer assembled by 1,3,5-trihydroxybenzene and terephthalic aldehyde. RSC Advances, 2014, 4, 28451.	1.7	26
83	Synthesis and humidity sensitive property of cross-linked water-resistant polymer electrolytes. Sensors and Actuators B: Chemical, 2015, 208, 277-282.	4.0	26
84	Highly sensitive TNT photoluminescent sensing by a phosphorescent complex. Sensors and Actuators B: Chemical, 2014, 199, 148-153.	4.0	24
85	A Composite Structure of <italic>In Situ</italic> Cross-Linked Poly(Ionic Liquid)s and Paper for Humidity-Monitoring Applications. IEEE Sensors Journal, 2019, 19, 833-837.	2.4	24
86	Preparation and humidity sensing properties of Ba0.8Sr0.2TiO3 nanofibers via electrospinning. Materials Letters, 2012, 66, 19-21.	1.3	23
87	Preparation of lithium-modified porous polymer for enhanced humidity sensitive properties. Sensors and Actuators B: Chemical, 2014, 203, 752-758.	4.0	23
88	An organometallic chemistry-assisted strategy for modification of zinc oxide nanoparticles by tin oxide nanoparticles: Formation of n-n heterojunction and boosting NO2 sensing properties. Journal of Colloid and Interface Science, 2020, 567, 328-338.	5.0	23
89	Development of solution processible organic-inorganic hybrid materials with core-shell framework for humidity monitoring. Sensors and Actuators B: Chemical, 2018, 255, 2878-2885.	4.0	22
90	Zn _x Co _{3â^'x} O ₄ bimetallic oxides derived from metal–organic frameworks for enhanced acetone sensing performances. Inorganic Chemistry Frontiers, 2019, 6, 3177-3183.	3.0	22

#	Article	IF	CITATIONS
91	Hydrogen bonds-induced room-temperature detection of DMMP based on polypyrrole-reduced graphene oxide hybrids. Sensors and Actuators B: Chemical, 2021, 346, 130518.	4.0	22
92	Investigation of the effect of oxygen-containing groups on reduced graphene oxide-based room-temperature NO2 sensor. Journal of Alloys and Compounds, 2019, 801, 142-150.	2.8	20
93	Preparation of hydrophilic organic groups modified mesoporous silica materials and their humidity sensitive properties. Sensors and Actuators B: Chemical, 2017, 240, 681-688.	4.0	19
94	Humidity Sensors Based on 3D Porous Polyelectrolytes via Breath Figure Method. Advanced Electronic Materials, 2020, 6, 1900846.	2.6	19
95	The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO2 for ppb-level DMMP sensing. Journal of Colloid and Interface Science, 2022, 608, 2703-2717.	5.0	19
96	White phosphorescent polymer light-emitting devices based on a wide band-gap polymer derived from 3,6-carbazole and tetraphenylsilane. Organic Electronics, 2010, 11, 498-502.	1.4	18
97	PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer. Dyes and Pigments, 2021, 191, 109379.	2.0	18
98	Humidity sensors based on metal organic frameworks derived polyelectrolyte films. Journal of Colloid and Interface Science, 2021, 602, 646-653.	5.0	17
99	The synergistic effects of MoS2 and reduced graphene oxide on sensing performances for electrochemical chloramphenicol sensor. FlatChem, 2022, 33, 100364.	2.8	17
100	A universal sugar-blowing approach to synthesize fluorescent nitrogen-doped carbon nanodots for detection of Hg(II). Applied Surface Science, 2021, 544, 148725.	3.1	16
101	Phosphorescent iridium(III) complex based photoluminescence sensor for sensitive and selective detection of picric acid. Dyes and Pigments, 2020, 172, 107799.	2.0	15
102	Highly efficient white polymer light-emitting devices based on wide bandgap polymer doped with blue and yellow phosphorescent dyes. Optics Letters, 2010, 35, 2436.	1.7	14
103	Glucose-assisted combustion synthesis of oxygen vacancy enriched α-MoO3 for ethanol sensing. Journal of Alloys and Compounds, 2022, 902, 163711.	2.8	14
104	Low temperature thermal treatment of hexamethylenetetramine to synthesize nitrogen-doped carbon for non-enzymatic H2O2 sensing. Sensors and Actuators B: Chemical, 2014, 201, 240-245.	4.0	13
105	Biomassâ€derived Nitrogen and Phosphorus Coâ€doped Hierarchical Micro/mesoporous Carbon Materials for Highâ€performance Nonâ€enzymatic H ₂ O ₂ Sensing. Electroanalysis, 2019, 31, 527-534.	1.5	12
106	Humidity Sensor Preparation by <italic>In Situ</italic> Click Polymerization. IEEE Electron Device Letters, 2018, 39, 1234-1237.	2.2	11
107	Highly Sensitive and Selective Dopamine Detection Utilizing Nitrogenâ€Doped Mesoporous Carbon Prepared by a Molten Glucoseâ€Assisted Hardâ€Template Approach. ChemPlusChem, 2019, 84, 845-852.	1.3	11
108	Mesoporous Magnesium Oxide Nanosheet Electrocatalysts for the Detection of Lead(II). ACS Applied Nano Materials, 2019, 2, 2606-2611.	2.4	11

#	Article	IF	CITATIONS
109	In Situ Preparation of Porous Humidity Sensitive Composite via a One-Stone-Two-Birds Strategy. Sensors and Actuators B: Chemical, 2020, 316, 128159.	4.0	11
110	Optical Waveguide Sensors for Measuring Human Temperature and Humidity with Gel Polymer Electrolytes . ACS Applied Materials & Interfaces, 2021, 13, 60384-60392.	4.0	9
111	A Highly Efficient Redâ€Emitting Ruthenium Complex with 3,5â€Difluorophenyl Substituents. ChemPlusChem, 2016, 81, 73-79.	1.3	8
112	Solvent-free synthesis of mesoporous carbon employing KIT-6 as hard template for removal of aqueous rhodamine B. Journal of Porous Materials, 2019, 26, 941-950.	1.3	8
113	Highly efficient white organic light-emitting devices based on a multiple-emissive-layer structure. Thin Solid Films, 2008, 516, 5133-5136.	0.8	5
114	Functionalized polymer waveguide optical switching devices integrated with visible optical amplifiers based on an organic gain material. Dyes and Pigments, 2020, 176, 108210.	2.0	5
115	High Sensitive Humidity Sensors Based on Biomass Ionogels. IEEE Sensors Journal, 2022, 22, 12570-12575.	2.4	5
116	Highly efficient pure yellow electrophosphorescent device by utilizing an electron blocking material. Semiconductor Science and Technology, 2009, 24, 105019.	1.0	4
117	A novel crosslinked polyelectrolyte synthesized via a one-step hydrothermal process as a humidity sensor. RSC Advances, 2014, 4, 43189-43194.	1.7	4
118	Low-temperature annealing to enhance efficiency in organic small-molecule solution-processable OLEDs. Semiconductor Science and Technology, 2011, 26, 055016.	1.0	1