Phuong Tuyet Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540491/publications.pdf

Version: 2024-02-01

759233 794594 19 471 12 19 g-index citations h-index papers 19 19 19 573 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep eutectic solvent based on choline chloride and phenol as electrolyte additives in dye-sensitized solar cells: a comparison with 4-tert-butylpyridine. Journal of the Australian Ceramic Society, 2022, 58, 913-921.	1.9	2
2	Choline chloride-based deep eutectic solvents as effective electrolytes for dye-sensitized solar cells. RSC Advances, 2021, 11, 21560-21566.	3.6	23
3	Synthesis of Hybrid Lead Iodide Perovskite Thin Film by Two-Step Method Modified with a Double Dipping Circle to Control Its Crystallization and Morphology to Improve Solar Cells' Performance. Journal of Nanomaterials, 2021, 2021, 1-7.	2.7	3
4	Direct experimental evidence for the adsorption of 4-tert-butylpyridine and 2,2′-bipyridine on TiO2 surface and their influence on dye-sensitized solar cells' performance. Applied Surface Science, 2020, 509, 144878.	6.1	9
5	Application of deep eutectic solvent from phenol and choline chloride in electrolyte to improve stability performance in dye-sensitized solar cells. Journal of Molecular Liquids, 2019, 277, 157-162.	4.9	41
6	1-Alkenyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids: novel and low-viscosity ionic liquid electrolytes for dye-sensitized solar cells. RSC Advances, 2018, 8, 13142-13147.	3.6	16
7	4,4′-dinonyl-2,2′-bipyridine as an alternative electrolyte additive for improving the thermal stability of ruthenium dyes in dye-sensitized solar cells. Journal of Physics and Chemistry of Solids, 2018, 122, 234-238.	4.0	4
8	2,2′-Bipyridine – A new electrolyte additive in dye-sensitized solar cells. Solid State Ionics, 2018, 314, 98-102.	2.7	13
9	Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. Applied Surface Science, 2017, 399, 515-522.	6.1	56
10	Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells. Applied Surface Science, 2017, 392, 441-447.	6.1	15
11	Electrochemical grafting of TiO2-based photo-anodes and its effect in dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2015, 758, 85-92.	3.8	12
12	Thermal stability of the DSC ruthenium dye C106 in robust electrolytes. Solar Energy, 2014, 110, 96-104.	6.1	18
13	Investigation of the Stability of the Ruthenium-Based Dye (N719) Utilizing the Polarization Properties of Dispersive Raman Modes and/or of the Fluorescent Emission. Journal of Physical Chemistry C, 2013, 117, 23500-23506.	3.1	6
14	The effect of 4-tert-butylpyridine and Li+ on the thermal degradation of TiO2-bound ruthenium dye N719. Solar Energy, 2013, 88, 23-30.	6.1	14
15	Dye-sensitized solar cells and complexes between pyridines and iodines. A NMR, IR and DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 247-251.	3.9	11
16	Charge Transport and Photocurrent Generation Characteristics in Dye Solar Cells Containing Thermally Degraded N719 Dye Molecules. Journal of Physical Chemistry C, 2011, 115, 15598-15606.	3.1	39
17	Photovoltaic Performance and Characteristics of Dyea€5ensitized Solar Cells Prepared with the N719 Thermal Degradation Products [Ru(LH) ₂ (NCS)(4â€ <i>tert</i> àê€butylpyridine)][N(Bu) ₄] and [Ru(LH) ₂ (NCS)(1â€methylbenzimidazole)][N(Bu) ₄]. European Journal of	2.0	35
18	Inorganic Chemistry, 2011, 2011, 2533-2539. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperaturesâ€"Can sterically hindered pyridines prevent dye degradation?. Solar Energy Materials and Solar Cells, 2010, 94, 1582-1590.	6.2	67

#	Article	IF	CITATIONS
19	Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures. Solar Energy Materials and Solar Cells, 2009, 93, 1939-1945.	6.2	87