
Hakan Ã**‡**liÅ**ž**an

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler. Energy and Buildings, 2012, 55, 747-756.	3.1	132
2	Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renewable and Sustainable Energy Reviews, 2017, 69, 488-492.	8.2	126
3	Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy, 2017, 128, 128-144.	4.5	125
4	Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. International Journal of Refrigeration, 2011, 34, 980-990.	1.8	111
5	Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study. Applied Thermal Engineering, 2013, 61, 784-798.	3.0	97
6	Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts. Energy, 2015, 90, 1219-1228.	4.5	79
7	Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy Conversion and Management, 2015, 89, 156-161.	4.4	79
8	Performance assessment of an internal combustion engine at varying dead (reference) state temperatures. Applied Thermal Engineering, 2009, 29, 3431-3436.	3.0	73
9	Thermodynamic analyses and assessments of various thermal energy storage systems for buildings. Energy Conversion and Management, 2012, 62, 109-122.	4.4	70
10	Exergetic and sustainability performance comparison of novel and conventional air cooling systems for building applications. Energy and Buildings, 2011, 43, 1461-1472.	3.1	66
11	Advanced exergy analysis of an electricity-generating facility using natural gas. Energy Conversion and Management, 2014, 82, 146-153.	4.4	63
12	Exergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental values. International Journal of Exergy, 2010, 7, 20.	0.2	61
13	A comparative study on energetic, exergetic and environmental performance assessments of novel M-Cycle based air coolers for buildings. Energy Conversion and Management, 2012, 56, 69-79.	4.4	61
14	Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system. International Journal of Hydrogen Energy, 2013, 38, 6104-6111.	3.8	61
15	Advanced exergoeconomic analysis of an electricity-generating facility that operates with natural gas. Energy Conversion and Management, 2014, 78, 452-460.	4.4	61
16	Environmental and enviroeconomic researches on diesel engines with diesel and biodiesel fuels. Journal of Cleaner Production, 2017, 154, 125-129.	4.6	61
17	Thermodynamic, environmental and economic effects of diesel and biodiesel fuels on exhaust emissions and nano-particles of a diesel engine. Transportation Research, Part D: Transport and Environment, 2017, 56, 203-221.	3.2	59
18	Environmental pollution cost analyses of biodiesel and diesel fuels for a diesel engine. Journal of Environmental Management, 2019, 243, 218-226.	3.8	55

#	Article	IF	CITATIONS
19	Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach. Sustainable Energy Technologies and Assessments, 2015, 11, 87-91.	1.7	50
20	Performance analysis of irreversible solid oxide fuel cell – Brayton heat engine with ecological based thermo-environmental criterion. Energy Conversion and Management, 2017, 148, 279-286.	4.4	43
21	On-design and off-design operation performance assessmentsof an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives. Energy Conversion and Management, 2021, 243, 114403.	4.4	43
22	Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Applied Thermal Engineering, 2018, 136, 504-515.	3.0	41
23	Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 2021, 232, 121031.	4.5	39
24	Exergetic cost analysis and sustainability assessment of an Internal Combustion Engine. International Journal of Exergy, 2011, 8, 310.	0.2	35
25	Enhanced thermodynamic assessments of the novel desiccant air cooling system for sustainable energy future. Journal of Cleaner Production, 2019, 211, 213-221.	4.6	35
26	Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility. Energy Conversion and Management, 2014, 81, 112-119.	4.4	34
27	Assessment of thermodynamic performance and exergetic sustainability of turboprop engine using mixture of kerosene and methanol. International Journal of Exergy, 2016, 19, 295.	0.2	34
28	Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental conditions. Renewable and Sustainable Energy Reviews, 2021, 140, 110730.	8.2	34
29	Energy and exergy analyses of ice rink buildings at varying reference temperatures. Energy and Buildings, 2010, 42, 1418-1425.	3.1	33
30	A review on exergetic analysis and assessment of various types of engines. International Journal of Exergy, 2010, 7, 287.	0.2	32
31	Advanced exergy analysis of a trigeneration system with a diesel–gas engine operating in a refrigerator plant building. Energy and Buildings, 2014, 80, 268-275.	3.1	32
32	Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications. Renewable and Sustainable Energy Reviews, 2015, 43, 1016-1034.	8.2	31
33	Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system. Journal of Environmental Management, 2019, 232, 455-461.	3.8	31
34	Energy and exergy analyses of combined thermochemical and sensible thermal energy storage systems for building heating applications. Energy and Buildings, 2012, 48, 103-111.	3.1	30
35	Methods used for evaluation of actual power generating thermal cycles and comparing them. International Journal of Electrical Power and Energy Systems, 2015, 69, 85-89.	3.3	29
36	Effects of cordierite particulate filters on diesel engine exhaust emissions in terms of pollution prevention approaches for better environmental management. Journal of Environmental Management, 2021, 293, 112873.	3.8	28

#	Article	IF	CITATIONS
37	Thermoeconomic analysis of a building energy system integrated with energy storage options. Energy Conversion and Management, 2013, 76, 274-281.	4.4	26
38	Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environmental Progress and Sustainable Energy, 2021, 40, e13547.	1.3	26
39	Energetic and exergetic comparison of the human body for the summer season. Energy Conversion and Management, 2013, 76, 169-176.	4.4	25
40	Energy, exergy, environmental and sustainability assessments of jet and hydrogen fueled military turbojet engine. International Journal of Hydrogen Energy, 2022, 47, 26728-26745.	3.8	23
41	Advanced low exergy (ADLOWEX) modeling and analysis of a building from the primary energy transformation to the environment. Energy and Buildings, 2014, 81, 281-286.	3.1	22
42	Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production. Renewable and Sustainable Energy Reviews, 2021, 149, 111323.	8.2	22
43	Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter. Journal of Thermal Analysis and Calorimetry, 2021, 145, 739-750.	2.0	21
44	Energy and exergy prices of various energy sources along with their CO2 equivalents. Energy Policy, 2010, 38, 3468-3481.	4.2	20
45	Thermodynamic assessments of the novel cascade air cooling system including solar heating and desiccant cooling units. Energy Conversion and Management, 2019, 199, 112013.	4.4	19
46	Energy, exergy, economic, environmental, energy based economic, exergoeconomic and enviroeconomic (7E) analyses of a jet fueled turbofan type of aircraft engine. Fuel, 2022, 322, 124165.	3.4	19
47	Exergy Analysis and Sustainability Assessment of a Solar-Ground Based Heat Pump With Thermal Energy Storage. Journal of Solar Energy Engineering, Transactions of the ASME, 2011, 133, .	1.1	18
48	Exergetic ecological index as a new exergetic indicator and an application for the heat engines. Thermal Science and Engineering Progress, 2018, 8, 204-210.	1.3	17
49	Environmental and enviroeconomic analyses of two different turbofan engine families considering landing and take-off (LTO) cycle and global warming potential (GWP) approach. Energy Conversion and Management, 2021, 248, 114797.	4.4	16
50	Performance assessment of an ice rink refrigeration system through advanced exergoeconomic analysis method. Energy and Buildings, 2017, 138, 118-126.	3.1	15
51	Thermodynamic based economic and environmental analyses of an industrial cogeneration system. Applied Thermal Engineering, 2019, 158, 113792.	3.0	15
52	Various thermoeconomic assessments of a heat and power system with a micro gas turbine engine used for industry. Energy Conversion and Management, 2022, 252, 114984.	4.4	15
53	Novel thermoenvironmental evaluation criteria and comparing them for an actual heat engine. Energy Conversion and Management, 2015, 106, 1118-1123.	4.4	14
54	Sustainability assessment of heat exchanger units for spray dryers. Energy, 2017, 124, 741-751.	4.5	14

#	Article	IF	CITATIONS
55	Thermo-Ecologic Evaluation of a Spray Dryer for Ceramic Industry. Energy Procedia, 2018, 144, 164-169.	1.8	14
56	Novel combined extended-advanced exergy analysis methodology as a new tool to assess thermodynamic systems. Energy Conversion and Management, 2021, 236, 114019.	4.4	14
57	Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine. Energy and Environment, 2020, 31, 1303-1317.	2.7	13
58	Thermo-ecological analysis of industrial kilns. Journal of Environmental Management, 2019, 241, 149-155.	3.8	10
59	Thermoecologic Assessment and Life Cycle–Based Environmental Pollution Cost Analysis of Microgas Turbine. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	10
60	Energy and Exergy Evaluation of an Air Separation Facility: A Case Study. Separation Science and Technology, 2014, 49, 2105-2113.	1.3	9
61	Sustainability analysis of a solar driven hydrogen production system using exergy, extended exergy, and thermo-ecological methods: Proposing and comparing of new indices. Energy Conversion and Management, 2021, 236, 114085.	4.4	9
62	Investigation of the energy recovery in the burners of the ceramic factory kiln. Energy Procedia, 2018, 144, 118-124.	1.8	8
63	Performance assessment of the proton exchange membrane fuel cell - chemical heat pump hybrid system. Energy Procedia, 2018, 144, 125-131.	1.8	8
64	Assessments of High-Efficient Regenerative Evaporative Cooler Effects on Desiccant Air Cooling Systems. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	8
65	Energetic and exergetic carbon dioxide equivalents and prices of the energy sources for buildings in Turkey. Environmental Progress and Sustainable Energy, 2018, 37, 912-925.	1.3	7
66	Life-Cycle Cost, Cooling Degree Day, and Carbon Dioxide Emission Assessments of Insulation of Refrigerated Warehouses Industry in Turkey. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	7
67	Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. Environmental Science and Pollution Research, 2022, 29, 87334-87346.	2.7	7
68	Exergetic Analysis and Assessment of Industrial Furnaces. Journal of Energy Resources Technology, Transactions of the ASME, 2010, 132, .	1.4	6
69	Energy, exergy, thermoeconomic and sustainability analyses of a building heating system with a combi-boiler. International Journal of Exergy, 2014, 14, 244.	0.2	6
70	Thermodynamic analysis and nanoparticle assessment of Japanese diesel no 2 fueled truck engine. Energy Procedia, 2018, 144, 104-110.	1.8	6
71	Effect of ammonia fuel fraction on the exergetic performance of a gas turbine. Energy Procedia, 2018, 144, 150-156.	1.8	6
72	Exergy, Exergoeconomic and Enviroeconomic Evaluation of a Biomass Boilerâ€Steam Engine Microâ€CHP System. Chemical Engineering and Technology, 2018, 41, 2141-2149.	0.9	6

#	Article	IF	CITATIONS
73	Thermodynamic analysis of diesel engine with sunflower biofuel. Proceedings of Institution of Civil Engineers: Energy, 2015, 168, 178-187.	0.5	5
74	Energy and exergy prices of the jet kerosene fuel with carbon emission equivalents for an aircraft used in the air transport sector in Turkey. Aircraft Engineering and Aerospace Technology, 2021, 93, 457-461.	0.7	5
75	Comparative performance and thermoeconomic analyses of high temperature polymer electrolyte membrane based two hybrid systems. International Journal of Hydrogen Energy, 2021, 46, 29411-29423.	3.8	5
76	Life cycle assessment based exergoenvironmental analysis of a cogeneration system used for ceramic factories. Sustainable Energy Technologies and Assessments, 2022, 52, 102078.	1.7	5
77	Thermal analysis and assessment of phase change material utilization for heating applications in buildings: A modelling. Journal of Energy Storage, 2022, 50, 104593.	3.9	5
78	ASSESSMENT OF THE ENERGY AND EXERGY ANALYSES RESULTS OF A BIODIESEL FUELED ENGINE DEPENDING ON THE ENGINE LOAD. Mühendislik Bilimleri Ve Tasarım Dergisi, 2020, 8, 833-843.	0.1	4
79	Evaluating and modelling of thermodynamic and environmental parameters of a gas turbine engine and its components. Journal of Cleaner Production, 2022, 365, 132762.	4.6	4
80	Assessment of Maisotsenko Combustion Turbine Cycle with Compressor Inlet Cooler. , 2015, , 41-55.		3
81	Assessment of a cogeneration system for ceramic industry by using various exergy based economic approaches. Renewable and Sustainable Energy Reviews, 2022, 167, 112728.	8.2	3
82	Environment-Energy Nexus: Industrial Ecology's Perspective. Journal of Environmental Engineering, ASCE, 2020, 146, 02020001.	0.7	2
83	Assessment of biofuels from waste cooking oils for diesel engines in terms of waste-to-energy perspectives. Sustainable Energy Technologies and Assessments, 2022, 50, 101839.	1.7	2
84	Analysis of vapor compression refrigeration cycle using advanced exergetic approach with Taguchi and ANOVA optimization and refrigerant selection with enviroeconomic concerns by TOPSIS analysis. Sustainable Energy Technologies and Assessments, 2022, 52, 102182.	1.7	2
85	Thermodynamic-based analyses and assessments of a new-generation turbojet engine used for unmanned aerial vehicles (UAVs). Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	1
86	Letter to Editor: Rebuttal to "Some comments to the paper â€~Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling andÂcase study'― Applied Thermal Engineering, 2013, 59, 480-489.	3.0	0
87	VSI: Environment & amp; Energy. Journal of Environmental Management, 2020, 270, 110668.	3.8	0
88	Environmental Impact Assessment of Various Energy Storage Options for Buildings. , 2013, , 1091-1141.		0