Hee-Ran Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540235/publications.pdf

Version: 2024-02-01

516710 552781 46 833 16 26 h-index citations g-index papers 47 47 47 415 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Compact Microstrip 3-dB Coupled-Line Ring and Branch-Line Hybrids With New Symmetric Equivalent Circuits. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 1067-1078.	4.6	70
2	New Design Formulas for Impedance-Transforming 3-dB Marchand Baluns. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2816-2823.	4.6	56
3	Arbitrary termination impedances, arbitrary power division, and small-sized ring hybrids. IEEE Transactions on Microwave Theory and Techniques, 1997, 45, 2241-2247.	4.6	48
4	Toward Integrated Circuit Size Reduction. IEEE Microwave Magazine, 2008, 9, 65-75.	0.8	46
5	Wideband Microstrip Coupled-Line Ring Hybrids for High Power-Division Ratios. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 1768-1780.	4.6	41
6	Small Wideband Coupled-Line Ring Hybrids With No Restriction on Coupling Power. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 1806-1817.	4.6	40
7	Impedance-Transforming Symmetric and Asymmetric DC Blocks. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2463-2474.	4.6	40
8	Complex Impedance Transformers Consisting of Only Transmission-Line Sections. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2073-2084.	4.6	32
9	3-dB Power Dividers With Equal Complex Termination Impedances and Design Methods for Controlling Isolation Circuits. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3872-3883.	4.6	28
10	Compact CVT-/CCT-Unequal Power Dividers for High-Power Division Ratios and Design Methods for Arbitrary Phase Differences. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2954-2964.	4.6	27
11	Asymmetric ring-hybrid phase shifters and attenuators. IEEE Transactions on Microwave Theory and Techniques, 2002, 50, 1146-1155.	4.6	24
12	Novel Generic Asymmetric and Symmetric Equivalent Circuits of $90\hat{A}^{\circ}$ Coupled Transmission-Line Sections Applicable to Marchand Baluns. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 746-760.	4.6	24
13	Modified Asymmetric Impedance Transformers (MCCTs and MCVTs) and Their Application to Impedance-Transforming Three-Port 3-dB Power Dividers. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 3312-3321.	4.6	22
14	New Isolation Circuits of Compact Impedance-Transforming 3-dB Baluns for Theoretically Perfect Isolation and Matching. IEEE Transactions on Microwave Theory and Techniques, 2010, , .	4.6	20
15	In-Phase T-Junction: Study and Application to Gysel Power Dividers for High Power-Division Ratios Requiring No High-Impedance Transmission-Line Section. IEEE Access, 2019, 7, 18146-18154.	4.2	18
16	A Novel Wideband Compact Microstrip Coupled-Line Ring Hybrid for Arbitrarily High Power-Division Ratios. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 630-634.	3.0	17
17	Arbitrary Power-Division Branch-Line Hybrids for High-Performance, Wideband, and Selective Harmonic Suppressions From & lt;inline-formula> & lt;tex-math notation="LaTeX">\$2f_{0}\$ & lt;/tex-math> & lt;/inline-formula>. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 978-987.	4.6	17
18	Wideband Coupled-Line Microstrip Filters With High-Impedance Short-Circuited Stubs. IEEE Microwave and Wireless Components Letters, 2011, 21, 586-588.	3.2	16

#	Article	IF	CITATIONS
19	Compact and Wideband General Coupled-Line Ring Hybrids (GCRHs) for Arbitrary Circumferences and Arbitrary Power-Division Ratios. IEEE Access, 2019, 7, 33414-33423.	4.2	13
20	General design equations of N-way arbitrary power dividers. , 0, , .		12
21	Compact UHF 3 dB MCCT Power Dividers. IEEE Microwave and Wireless Components Letters, 2014, 24, 445-447.	3.2	11
22	A Novel Compact Isolation Circuit Suitable for Ultracompact and Wideband Marchand Baluns. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2299-2303.	3.0	10
23	Complex Impedance Transformers Based on Allowed and Forbidden Regions. IEEE Access, 2019, 7, 39288-39298.	4.2	9
24	Comments on "Converting baluns into broad-band impedance-transforming 180/spl deg/ hybrids". IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 228-230.	4.6	7
25	Wideband and Compact Impedance-Transforming 90° DC Blocks With Symmetric Coupled Transmission-Line Sections. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 80-87.	2.5	6
26	Modified Small Asymmetric Impedance Transformers. , 2008, , .		5
27	Corrections to "Impedance-Transforming Symmetric and Asymmetric DC Blocks―[Sep 10 2463-2474]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 207-207.	4.6	5
28	Comments on "A Rigorous Design Methodology for Compact Planar Branch-Line and Rat-Race Couplers With Asymmetrical \$T\$-Structures― IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 1728-1729.	4.6	5
29	Ultra-Compact and Wideband V(U)HF 3-dB Power Dividers Consisting of Novel Asymmetric Impedance Transformers. IEEE Access, 2019, 7, 76367-76375.	4.2	5
30	Notice of Retraction: Comments on "A Universal Approach for Designing an Unequal Branch-Line Coupler With Arbitrary Phase Differences and Input/Output Impedances― IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 1208-1209.	2.5	5
31	Coupling-compensated 180° phase shift coupled-Line filters terminated in arbitrary impedances. , 2006, , .		4
32	Design Method for Butter–Cheby Bandpass Filters With Even Number of Resonators. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1549-1559.	4.6	4
33	Notice of Retraction: Comments on "On-Chip Miniaturized Diplexer Using Joint Dual-Mode Right-/Left-Handed Synthesized Coplanar Waveguides on GIPD Process― IEEE Microwave and Wireless Components Letters, 2016, 26, 380-382.	3.2	3
34	Notice of Retraction: Comments on "Novel Sub-Miniaturized Wilkinson Power Divider Based on Small Phase Delay― IEEE Microwave and Wireless Components Letters, 2019, 29, 439-439.	3.2	3
35	Notice of Retraction: Comments on "A Theorem on Asymmetric Structure Based Rat-Race Coupler― IEEE Microwave and Wireless Components Letters, 2019, 29, 696-698.	3.2	3
36	Coupled Lines for Wearable Power Dividers: Coupled Transmission-Line Sections for Power Dividers in Wearable and Flexible RF Electronics. IEEE Microwave Magazine, 2020, 21, 66-87.	0.8	3

#	Article	IF	CITATIONS
37	Complex Impedance Transformers: Their Use in Designing Various Ultracompact and Wideband Power Dividers. IEEE Microwave Magazine, 2020, 21, 53-64.	0.8	3
38	Balancedâ€toâ€unbalanced power dividers for arbitrary power division ratios and forarbitrary real termination impedances. IET Microwaves, Antennas and Propagation, 2019, 13, 904-910.	1.4	3
39	Small-sized wideband CVT- and CCT-ring filters. , 0, , .		2
40	Capacitive-Loaded Interstitial Antennas for Perfect Matching and Desirable SAR Distributions. IEEE Transactions on Biomedical Engineering, 2006, 53, 284-291.	4.2	2
41	Reply to "Comments on Reply to Comments on "Wideband Coupled-Line Filters With High-Impedance Short-Circuited Stubs―― IEEE Microwave and Wireless Components Letters, 2014, 24, 357-359.	3.2	2
42	A ring filter switch for a low loss wideband and very sharp bandstop filter. Microwave and Optical Technology Letters, 2007, 49, 2828-2830.	1.4	1
43	Compact impedance-transforming 3-dB three-port power dividers with modified asymmetric impedance transformers (MCCTs)., 2011,,.		0
44	Comments on "Bandwidth-Compensation Method for Miniaturized Parallel Coupled-Line Filters. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2369-2369.	4.6	0
45	Notice of Retraction: Comments on "Coupling Coefficient Reconfigurable Wideband Branch-Line Coupler Topology With Harmonic Suppression†IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 834-834.	4.6	0
46	Notice of Retraction: Comments on "A Modified Gysel Power Divider of Arbitrary Power Ratio and Real Termination Impedancesâ€. IEEE Microwave and Wireless Components Letters, 2020, 30, 621-623.	3.2	0