
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5540156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, 2022, 13, .	5.8	146
2	Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science Advances, 2021, 7, .	4.7	130
3	The trajectory of soil development and its relationship to soil carbon dynamics. Geoderma, 2021, 403, 115378.	2.3	11
4	An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data, 2020, 12, 61-76.	3.7	48
5	Soils can help mitigate CO2 emissions, despite the challenges. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10211-10212.	3.3	20
6	A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma, 2018, 312, 24-35.	2.3	76
7	Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology, 2018, 24, e705-e718.	4.2	92
8	Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems. Biogeosciences, 2016, 13, 4315-4327.	1.3	7
9	Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 2016, 353, 1419-1424.	6.0	149
10	Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56.	1.9	343
11	Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2596-2611.	1.3	29
12	Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA. Geoderma, 2015, 247-248, 73-87.	2.3	105
13	Effect of permafrost thaw on CO ₂ and CH ₄ exchange in a western Alaska peatland chronosequence. Environmental Research Letters, 2014, 9, 085004.	2.2	45
14	Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West entral Alaska. Permafrost and Periglacial Processes, 2014, 25, 14-34.	1.5	72
15	Controls on methane released through ebullition in peatlands affected by permafrost degradation. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 418-431.	1.3	46
16	The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Global Change Biology, 2013, 19, 604-620.	4.2	43
17	Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone. Environmental Research Letters, 2013, 8, 035028.	2.2	42
18	Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska. Environmental Research Letters, 2013, 8, 045029.	2.2	30

#	Article	IF	CITATIONS
19	Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 2012, 39, .	1.5	265
20	Photodissolution of soil organic matter. Geoderma, 2012, 170, 314-321.	2.3	36
21	Persistence of soil organic matter in eroding versus depositional landform positions. Journal of Geophysical Research, 2012, 117, .	3.3	138
22	Spatiotemporal analysis of black spruce forest soils and implications for the fate of C. Journal of Geophysical Research, 2012, 117, .	3.3	20
23	The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland. Ecosystems, 2012, 15, 213-229.	1.6	162
24	The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Global Change Biology, 2011, 17, 1461-1474.	4.2	103
25	Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 2011, 4, 27-31.	5.4	428
26	Water and heat transport in boreal soils: Implications for soil response to climate change. Science of the Total Environment, 2011, 409, 1836-1842.	3.9	21
27	The carbon budget of the northern cryosphere region. Current Opinion in Environmental Sustainability, 2010, 2, 231-236.	3.1	61
28	The role of soil drainage class in carbon dioxide exchange and decomposition in boreal black spruce (<i>Picea mariana</i>) forest stands. Canadian Journal of Forest Research, 2010, 40, 2123-2134.	0.8	27
29	Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a borealâ€ r ich fen. Journal of Geophysical Research, 2010, 115, .	3.3	43
30	The role of mosses in ecosystem succession and function in Alaska's boreal forestThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1237-1264.	0.8	129
31	Interactive Effects of Fire, Soil Climate, and Moss on CO2 Fluxes in Black Spruce Ecosystems of Interior Alaska. Ecosystems, 2009, 12, 57-72.	1.6	64
32	Erosion of soil organic carbon: Implications for carbon sequestration. Geophysical Monograph Series, 2009, , 189-202.	0.1	4
33	The Effect of Moisture Content on the Thermal Conductivity of Moss and Organic Soil Horizons From Black Spruce Ecosystems in Interior Alaska. Soil Science, 2009, 174, 646-651.	0.9	143
34	Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska. Ecosystems, 2008, 11, 209-225.	1.6	120
35	Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Global Change Biology, 2008, 14, 2591-2602.	4.2	69
36	Boreal soil carbon dynamics under a changing climate: A model inversion approach. Journal of Geophysical Research, 2008, 113, .	3.3	59

#	Article	IF	CITATIONS
37	Linking soil organic matter dynamics and erosionâ€induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research, 2008, 113, .	3.3	126
38	Soil Erosion: Data Say C Sink. Science, 2008, 320, 178-179.	6.0	58
39	The Significance of the Erosion-induced Terrestrial Carbon Sink. BioScience, 2007, 57, 337-346.	2.2	348
40	Wildfires threaten mercury stocks in northern soils. Geophysical Research Letters, 2006, 33, .	1.5	95
41	Geomorphic control of landscape carbon accumulation. Journal of Geophysical Research, 2006, 111, .	3.3	54
42	Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	53
43	Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma, 2006, 131, 89-109.	2.3	166
44	Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Global Change Biology, 2006, 12, 2391-2403.	4.2	123
45	Spatial Patterning of Soil Carbon Storage Across Boreal Landscapes. , 2005, , 229-255.		8
46	Comparing electronic probes for volumetric water content of lowâ€density feathermoss. Sensor Review, 2005, 25, 215-221.	1.0	9
47	Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates. Geochimica Et Cosmochimica Acta, 2005, 69, 1975-1996.	1.6	94
48	Moisture content measurements of moss (Sphagnum spp.) using commercial sensors. Permafrost and Periglacial Processes, 2004, 15, 309-318.	1.5	53
49	Fire dynamics and implications for nitrogen cycling in boreal forests. Journal of Geophysical Research, 2003, 108, WFX 4-1.	3.3	35
50	lsotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling. Global Biogeochemical Cycles, 2003, 17, 1-1-1-9.	1.9	101
51	Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biology, 2002, 8, 941-953.	4.2	121
52	Scientists unearth clues to soil contamination by comparing old and new soil samples. Eos, 2000, 81, 53.	0.1	9
53	Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research, 1999, 104, 27673-27682.	3.3	58
54	Soil Carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochemical Cycles, 1998, 12, 687-701.	1.9	106

#	Article	IF	CITATIONS
55	Carbon Cycling in Terrestrial Environments. , 1998, , 577-610.		12
56	Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochimica Et Cosmochimica Acta, 1996, 60, 2533-2550.	1.6	315
57	Quaternary soils and dust deposition in southern Nevada and California. Bulletin of the Geological Society of America, 1995, 107, 1003-1022.	1.6	159
58	Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations. Quaternary Research, 1994, 42, 60-71.	1.0	66
59	Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet. Science, 1992, 258, 1921-1924.	6.0	198
60	Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A Geoderma, 1992, 52, 303-342.	2.3	75
61	Rates of Soil Development from Four Soil Chronosequences in the Southern Great Basin. Quaternary Research, 1991, 35, 383-399.	1.0	77
62	Soil development on stable landforms and implications for landscape studies. Geomorphology, 1990, 3, 391-398.	1.1	37
63	Holocene and late Pleistocene slip rates on the San Andreas fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology. Bulletin of the Geological Society of America, 1989, 101, 1107-1117.	1.6	52
64	Development Rates of Late Quaternary Soils, Silver Lake Playa, California. Soil Science Society of America Journal, 1989, 53, 1127-1140.	1.2	90
65	Genetic interpretations of elemental and chemical differences in a soil chronosequence, California. Geoderma, 1988, 43, 179-193.	2.3	40
66	Distribution of calcium carbonate in desert soils: A model. Geology, 1988, 16, 303.	2.0	65
67	MEASUREMENTS OF WATER PENETRATION AND VOLUME PERCENTAGE WATER-HOLDING CAPACITY FOR UNDISTURBED, COARSE-TEXTURED SOILS IN SOUTHWESTERN CALIFORNIA. Soil Science, 1988, 146, 374-383.	0.9	8
68	A Quantitative Comparison of Soil Development in Four Climatic Regimes. Quaternary Research, 1983, 20, 342-359.	1.0	178
69	A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma, 1982, 28, 1-28.	2.3	440