Weining Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5539900/publications.pdf

Version: 2024-02-01

34 papers	4,230 citations	304602 22 h-index	395590 33 g-index
35 all docs	35 docs citations	35 times ranked	4919 citing authors

#	Article	IF	Citations
1	Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genetics, 2003, 33, 129-137.	9.4	1,822
2	Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nature Genetics, 1997, 17, 179-181.	9.4	420
3	A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development (Cambridge), 2002, 129, 5839-5846.	1.2	220
4	Disruption of ROBO2 Is Associated with Urinary Tract Anomalies and Confers Risk of Vesicoureteral Reflux. American Journal of Human Genetics, 2007, 80, 616-632.	2.6	189
5	Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nature Genetics, 2002, 30, 185-189.	9.4	181
6	Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes. Nature Genetics, 1999, 21, 160-161.	9.4	149
7	Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. Journal of the American Society of Nephrology: JASN, 2018, 29, 2348-2361.	3.0	147
8	Tissue-Specific Reduction in Splicing Efficiency of IKBKAP Due to the Major Mutation Associated with Familial Dysautonomia. American Journal of Human Genetics, 2003, 72, 749-758.	2.6	125
9	NFIA Haploinsufficiency Is Associated with a CNS Malformation Syndrome and Urinary Tract Defects. PLoS Genetics, 2007, 3, e80.	1.5	100
10	Characterization of Apparently Balanced Chromosomal Rearrangements from the Developmental Genome Anatomy Project. American Journal of Human Genetics, 2008, 82, 712-722.	2.6	95
11	MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Human Molecular Genetics, 2015, 24, 2375-2389.	1.4	90
12	Lower urinary tract development and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 307-342.	6.6	74
13	Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 647-655.	1.8	72
14	Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. American Journal of Human Genetics, 2015, 97, 291-301.	2.6	72
15	Mutations of the SLIT2–ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Human Genetics, 2015, 134, 905-916.	1.8	62
16	Inhibitory Effects of Robo2 on Nephrin: A Crosstalk between Positive and Negative Signals Regulating Podocyte Structure. Cell Reports, 2012, 2, 52-61.	2.9	53
17	Models for microarray gene expression data. Journal of Biopharmaceutical Statistics, 2002, 12, 1-19.	0.4	45
18	A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling. Journal of the American Society of Nephrology: JASN, 2017, 28, 2364-2376.	3.0	40

#	Article	IF	CITATIONS
19	Disruption of Diacylglycerol Kinase Delta (DGKD) Associated with Seizures in Humans and Mice. American Journal of Human Genetics, 2007, 80, 792-799.	2.6	39
20	SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight, 2016 , 1 , $e86934$.	2.3	34
21	The fate of Notch-deficient nephrogenic progenitor cells during metanephric kidney development. Kidney International, 2011, 79, 1099-1112.	2.6	28
22	Crim1 regulates integrin signaling in murine lens development. Development (Cambridge), 2015, 143, 356-66.	1.2	27
23	Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. American Journal of Human Genetics, 2020, 107, 727-742.	2.6	25
24	Identification of direct negative cross-talk between the SLIT2 and bone morphogenetic protein–Gremlin signaling pathways. Journal of Biological Chemistry, 2018, 293, 3039-3055.	1.6	24
25	Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 2073-2090.	3.0	19
26	Loss of Zeb2 in mesenchyme-derived nephrons causes primary glomerulocystic disease. Kidney International, 2016, 90, 1262-1273.	2.6	17
27	Noninvasive Assessment of Antenatal Hydronephrosis in Mice Reveals a Critical Role for Robo2 in Maintaining Anti-Reflux Mechanism. PLoS ONE, 2011, 6, e24763.	1.1	14
28	Roundabout receptor 2 maintains inhibitory control of the adult midbrain. ELife, 2017, 6, .	2.8	14
29	Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot ProcessÂStructure. American Journal of Pathology, 2020, 190, 799-816.	1.9	10
30	Assessing vesicoureteral reflux in live inbred mice via ultrasound with a microbubble contrast agent. American Journal of Physiology - Renal Physiology, 2011, 300, F1262-F1265.	1.3	7
31	Blocking peptides and molecular mimicry as treatment for kidney disease. American Journal of Physiology - Renal Physiology, 2017, 312, F1016-F1025.	1.3	5
32	A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux. PLoS ONE, 2018, 13, e0191224.	1.1	5
33	PODO: Trial Design: Phase 2 Study of PF-06730512 in Focal Segmental Glomerulosclerosis. Kidney International Reports, 2021, 6, 1629-1633.	0.4	4
34	Regulation of Ureteric Bud Outgrowth and the Consequences of Disrupted Development. , 2016, , 209-227.		2