Eleanor M Maine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5539399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Current Biology, 2000, 10, 169-178.	1.8	502
2	Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the <i>C. elegans</i> germline. Development (Cambridge), 2011, 138, 2223-2234.	1.2	142
3	EGO-1, a Putative RNA-Dependent RNA Polymerase, Is Required for Heterochromatin Assembly on Unpaired DNA during C. elegans Meiosis. Current Biology, 2005, 15, 1972-1978.	1.8	85
4	Regulation of Heterochromatin Assembly on Unpaired Chromosomes during Caenorhabditis elegans Meiosis by Components of a Small RNA-Mediated Pathway. PLoS Genetics, 2009, 5, e1000624.	1.5	82
5	Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans. Nature, 1991, 352, 811-815.	13.7	65
6	Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in <i>C. elegans</i> embryos. Science Advances, 2018, 4, eaat6224.	4.7	55
7	EGO-1, a Putative RNA-Directed RNA Polymerase, Promotes Germline Proliferation in Parallel With GLP-1/Notch Signaling and Regulates the Spatial Organization of Nuclear Pore Complexes and Germline P Granules in Caenorhabditis elegans. Genetics, 2005, 170, 1121-1132.	1.2	52
8	Caenorhabditis elegans atx-2 Promotes Germline Proliferation and the Oocyte FateSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AY571963 Genetics, 2004, 168, 817-830.	1.2	43
9	Fineâ€scale belowground species associations in temperate grassland. Molecular Ecology, 2015, 24, 3206-3216.	2.0	29
10	Meiotic silencing in Caenorhabditis elegans. International Review of Cell and Molecular Biology, 2010, 282, 91-134.	1.6	24
11	RNAi As a Tool for Understanding Germline Development in Caenorhabditis elegans: Uses and Cautions. Developmental Biology, 2001, 239, 177-189.	0.9	23
12	A conserved mechanism for post-transcriptional gene silencing?. Genome Biology, 2000, 1, reviews1018.1.	13.9	21
13	A DNA repair protein and histone methyltransferase interact to promote genome stability in the Caenorhabditis elegans germ line. PLoS Genetics, 2019, 15, e1007992.	1.5	19
14	Studying gene function in Caenorhabditis elegans using RNA-mediated interference. Briefings in Functional Genomics & Proteomics, 2008, 7, 184-194.	3.8	16
15	Screening by deep sequencing reveals mediators of microRNA tailing in <i>C. elegans</i> . Nucleic Acids Research, 2021, 49, 11167-11180.	6.5	16
16	UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2016, 6, 2125-2134.	0.8	15
17	The Bro1-Domain Protein, EGO-2, Promotes Notch Signaling in <i>Caenorhabditis elegans</i> . Genetics, 2007, 176, 2265-2277.	1.2	13
18	Enrichment of H3K9me2 on Unsynapsed Chromatin in Caenorhabditis elegans Does Not Target de Novo Sites, G3: Genes, Genomes, Genetics, 2015, 5, 1865-1878,	0.8	12

ELEANOR M MAINE

#	Article	IF	CITATIONS
19	Genetic control of cell communication inC. elegans development. BioEssays, 1990, 12, 265-271.	1.2	11
20	Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development inCaenorhabditis elegans. Genesis, 2006, 44, 412-418.	0.8	8
21	The balance of poly(U) polymerase activity ensures germline identity, survival and development in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2018, 145, .	1.2	6
22	The Molecular Chaperone HSP90 Promotes Notch Signaling in the Germline of <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1535-1544.	0.8	4
23	Epigenetic Control of Germline Development. Advances in Experimental Medicine and Biology, 2013, 757, 373-403.	0.8	4
24	Simplified detection of a point mutation in using tetra-primer ARMS-PCR. MicroPublication Biology, 2018, 2018, .	0.1	4
25	Using model organisms in an undergraduate laboratory to link genotype, phenotype, and the environment. Journal of Biological Education, 2013, 47, 52-59.	0.8	3
26	An RNA-Mediated Silencing Pathway Utilizes the Coordinated Synthesis of Two Distinct Populations of siRNA. Molecular Cell, 2010, 37, 593-595.	4.5	1
27	Developmental Biology: Small RNAs Play Their Part. Current Biology, 2011, 21, R274-R276.	1.8	0
28	Meiotic H3K9me2 distribution is influenced by the ALG-3 and ALG-4 pathway and by poly(U) polymerase activity. MicroPublication Biology, 2021, 2021, .	0.1	0