Declan Carolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5539367/publications.pdf

Version: 2024-02-01

		1163117	1125743	
13	279	8	13	
papers	citations	h-index	g-index	
13	13	13	345	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Mechanical and fracture properties of epoxy adhesives modified with graphene nanoplatelets and rubber particles. International Journal of Adhesion and Adhesives, 2018, 81, 21-29.	2.9	54
2	Toughening epoxy syntactic foams with milled carbon fibres: Mechanical properties and toughening mechanisms. Materials and Design, 2019, 169, 107654.	7.0	38
3	Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives. Journal of Materials Science, 2017, 52, 4493-4508.	3.7	37
4	A Raman spectroscopy investigation into the influence of thermal treatments on the residual stress of polycrystalline diamond. International Journal of Refractory Metals and Hard Materials, 2015, 52, 114-122.	3.8	33
5	Fracture and fatigue behaviour of carbon fibre composites with nanoparticle-sized fibres. Composite Structures, 2019, 217, 143-149.	5.8	33
6	Simultaneously tough and conductive rubber–graphene–epoxy nanocomposites. Journal of Materials Science, 2016, 51, 8631-8644.	3.7	21
7	Curing rate effects on the toughness of epoxy polymers. Polymer, 2018, 159, 116-123.	3.8	19
8	Mechanical and fracture performance of carbon fibre reinforced composites with nanoparticle modified matrices. Procedia Structural Integrity, 2016, 2, 96-103.	0.8	17
9	Quantifying Alumina Nanoparticle Dispersion in Hybrid Carbon Fiber Composites Using Photoluminescent Spectroscopy. Applied Spectroscopy, 2017, 71, 258-266.	2.2	8
10	Synergistic toughening and electrical functionalization of an epoxy using <scp>MWCNTs</scp> and silane―/plasmaâ€activated basalt fibers. Journal of Applied Polymer Science, 2021, 138, .	2.6	8
11	Experimental and numerical analysis of conductive ternary polymer blend composites. Journal of Applied Polymer Science, 2017, 134, .	2.6	5
12	Effect of rapid manufacturing on the performance of carbon fibre epoxy polymers. Journal of Materials Science, 2021, 56, 6188-6203.	3.7	5
13	A simplified approach to modelling temperature rises in battery cells and modules. Applied Thermal Engineering, 2022, 210, 118357.	6.0	1