Michel O Steinmetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553932/publications.pdf

Version: 2024-02-01

185 papers 15,820 citations

67 h-index 117 g-index

209 all docs

209 docs citations

times ranked

209

16192 citing authors

#	Article	IF	CITATIONS
1	<i>In Vivo</i> Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M. Journal of the American Chemical Society, 2022, 144, 5614-5628.	6.6	24
2	Rational Design of a Novel Tubulin Inhibitor with a Unique Mechanism of Action. Angewandte Chemie, 2022, 134, .	1.6	1
3	Rational Design of a Novel Tubulin Inhibitor with a Unique Mechanism of Action. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
4	Crystallization Systems for the High-Resolution Structural Analysis of Tubulin–Ligand Complexes. Methods in Molecular Biology, 2022, 2430, 349-374.	0.4	3
5	Novel fragment-derived colchicine-site binders as microtubule-destabilizing agents. European Journal of Medicinal Chemistry, 2022, 241, 114614.	2.6	10
6	A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chemical Biology, 2021, 28, 228-241.e6.	2. 5	43
7	Centriole length control. Current Opinion in Structural Biology, 2021, 66, 89-95.	2.6	13
8	Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter, 2021, 17, 1655-1662.	1.2	32
9	The Mechanism of Selective Kinesin Inhibition by Kinesin Binding Protein. Biophysical Journal, 2021, 120, 6a.	0.2	O
10	Centrosomes in the spotlight: from organization to function to role in disease. Current Opinion in Structural Biology, 2021, 66, iii-v.	2.6	0
11	Comprehensive Analysis of Binding Sites in Tubulin. Angewandte Chemie - International Edition, 2021, 60, 13331-13342.	7.2	44
12	Comprehensive Analysis of Binding Sites in Tubulin. Angewandte Chemie, 2021, 133, 13443-13454.	1.6	7
13	Preclinical and Early Clinical Development of PTC596, a Novel Small-Molecule Tubulin-Binding Agent. Molecular Cancer Therapeutics, 2021, 20, 1846-1857.	1.9	13
14	1,3â€Benzodioxoleâ€Modified Noscapine Analogues: Synthesis, Antiproliferative Activity, and Tubulinâ€Bound Structure. ChemMedChem, 2021, 16, 2882-2894.	1.6	6
15	Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure, 2021, 29, 1266-1278.e4.	1.6	5
16	Inhibiting parasite proliferation using a rationally designed antiâ€ŧubulin agent. EMBO Molecular Medicine, 2021, 13, e13818.	3.3	14
17	Taxanes convert regions of perturbed microtubule growth into rescue sites. Nature Materials, 2020, 19, 355-365.	13.3	44
18	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	4.5	22

#	Article	IF	Citations
19	Structural Basis of Noscapine Activation for Tubulin Binding. Journal of Medicinal Chemistry, 2020, 63, 8495-8501.	2.9	30
20	Structural Refinement of the Tubulin Ligand (+)-Discodermolide to Attenuate Chemotherapy-Mediated Senescence. Molecular Pharmacology, 2020, 98, 156-167.	1.0	4
21	Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Current Biology, 2020, 30, 972-987.e12.	1.8	30
22	Homodimerization of coronin A through the Câ€terminal coiledâ€coil domain is essential for multicellular differentiation of <i>DictyosteliumÂdiscoideum</i> . FEBS Letters, 2020, 594, 2116-2127.	1.3	1
23	Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCrJ, 2020, 7, 965-975.	1.0	25
24	Structural model for differential cap maturation at growing microtubule ends. ELife, 2020, 9, .	2.8	44
25	WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. ELife, 2020, 9, .	2.8	31
26	The mechanism of kinesin inhibition by kinesin-binding protein. ELife, 2020, 9, .	2.8	15
27	VISAGE Reveals a Targetable Mitotic Spindle Vulnerability in Cancer Cells. Cell Systems, 2019, 9, 74-92.e8.	2.9	24
28	Crystal Structure of a Heterotetrameric Katanin p60:p80 Complex. Structure, 2019, 27, 1375-1383.e3.	1.6	11
29	Structural Basis of Colchicine-Site targeting Acylhydrazones active against Multidrug-Resistant Acute Lymphoblastic Leukemia. IScience, 2019, 21, 95-109.	1.9	4
30	GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses. Cell Reports, 2019, 28, 3367-3380.e8.	2.9	37
31	Structure, Thermodynamics, and Kinetics of Plinabulin Binding to Two Tubulin Isotypes. CheM, 2019, 5, 2969-2986.	5.8	33
32	Structural basis of tubulin detyrosination by the vasohibin–SVBP enzyme complex. Nature Structural and Molecular Biology, 2019, 26, 571-582.	3.6	42
33	Microtubule minus-end regulation at a glance. Journal of Cell Science, 2019, 132, .	1.2	67
34	Conformational Properties of the Chemotherapeutic Drug Analogue Epothilone A: How to Model a Flexible Protein Ligand Using Scarcely Available Experimental Data. Journal of Chemical Information and Modeling, 2019, 59, 2218-2230.	2.5	4
35	Crystal Structure of the Cyclostreptin-Tubulin Adduct: Implications for Tubulin Activation by Taxane-Site Ligands. International Journal of Molecular Sciences, 2019, 20, 1392.	1.8	24
36	MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 2019, 218, 1298-1318.	2.3	114

#	Article	IF	Citations
37	Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 2019, 10, 5236.	5.8	36
38	Tetrahydroisoquinoline Sulfamates as Potent Microtubule Disruptors: Synthesis, Antiproliferative and Antitubulin Activity of Dichlorobenzyl-Based Derivatives, and a Tubulin Cocrystal Structure. ACS Omega, 2019, 4, 755-764.	1.6	9
39	Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 2019, 162, 290-320.	2.6	31
40	Remote control of microtubule plus-end dynamics and function from the minus-end. ELife, 2019, 8, .	2.8	23
41	Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure, 2018, 26, 375-382.e4.	1.6	47
42	Cep 120 promotes microtubule formation through a unique tubulin binding C2 domain. Journal of Structural Biology, 2018, 203, 62-70.	1.3	10
43	Interaction between the <i>Caenorhabditis elegans </i> centriolar protein SAS-5 and microtubules facilitates organelle assembly. Molecular Biology of the Cell, 2018, 29, 722-735.	0.9	8
44	Structure-Function Relationship of the Bik1-Bim1 Complex. Structure, 2018, 26, 607-618.e4.	1.6	18
45	High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Scientific Reports, 2018, 8, 4242.	1.6	42
46	Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. Journal of Medicinal Chemistry, 2018, 61, 1031-1044.	2.9	91
47	Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils. Bioscience Reports, 2018, 38, .	1.1	4
48	A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansineÂsite of tubulin. Nature Communications, 2018, 9, 2106.	5.8	41
49	CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain. Developmental Cell, 2018, 46, 40-58.e8.	3.1	110
50	Sustainable Syntheses of (\hat{a}^{2}) -Jerantinines A & Structural Characterisation of the Jerantinine-Tubulin Complex at the Colchicine Binding Site. Scientific Reports, 2018, 8, 10617.	1.6	10
51	Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends in Cell Biology, 2018, 28, 776-792.	3.6	340
52	Structural Basis of Microtubule Stabilization by Discodermolide. ChemBioChem, 2017, 18, 905-909.	1.3	30
53	Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 2017, 8, 14683.	5.8	88
54	Structural Basis of cis- and trans-Combretastatin Binding to Tubulin. CheM, 2017, 2, 102-113.	5.8	164

#	Article	IF	CITATIONS
55	Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nature Cell Biology, 2017, 19, 480-492.	4.6	147
56	Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure, 2017, 25, 924-932.e4.	1.6	37
57	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	4.5	197
58	A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nature Structural and Molecular Biology, 2017, 24, 931-943.	3.6	86
59	Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 2017, 8, 542.	5.8	203
60	Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis. Current Biology, 2017, 27, 2486-2498.e6.	1.8	53
61	Structural basis of katanin p60:p80 complex formation. Scientific Reports, 2017, 7, 14893.	1.6	24
62	Kinesin-4 KIF21B is a potent microtubule pausing factor. ELife, 2017, 6, .	2.8	51
63	Quinolin-6-Yloxyacetamides Are Microtubule Destabilizing Agents That Bind to the Colchicine Site of Tubulin. International Journal of Molecular Sciences, 2017, 18, 1336.	1.8	9
64	Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget, 2017, 8, 14325-14342.	0.8	50
65	Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation. Journal of Molecular Biology, 2016, 428, 2981-2988.	2.0	64
66	Structural Determinants of the Dictyostatin Chemotype for Tubulin Binding Affinity and Antitumor Activity Against Taxane- and Epothilone-Resistant Cancer Cells. ACS Omega, 2016, 1, 1192-1204.	1.6	22
67	Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning. Molecular Biology of the Cell, 2016, 27, 3729-3745.	0.9	17
68	The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding. Structure, 2016, 24, 1358-1371.	1.6	27
69	EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Nature Cell Biology, 2016, 18, 1102-1108.	4.6	81
70	Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network. Journal of Biological Chemistry, 2016, 291, 18496-18504.	1.6	31
71	The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity. Science Translational Medicine, 2016, 8, 365ra159.	5.8	42
72	Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations. Scientific Reports, 2016, 6, 30668.	1.6	26

#	Article	IF	Citations
73	Crystal Structures of the Human Doublecortin C- and N-terminal Domains in Complex with Specific Antibodies. Journal of Biological Chemistry, 2016, 291, 16292-16306.	1.6	16
74	Data-collection strategy for challenging native SAD phasing. Acta Crystallographica Section D: Structural Biology, 2016, 72, 421-429.	1.1	42
75	Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth. Developmental Cell, 2016, 37, 362-376.	3.1	90
76	Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes. Current Biology, 2016, 26, 1713-1721.	1.8	97
77	SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centrioleAarchitecture. Nature Cell Biology, 2016, 18, 393-403.	4.6	73
78	Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Current Biology, 2016, 26, 849-861.	1.8	82
79	Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. PLoS ONE, 2016, 11, e0160890.	1.1	121
80	Abstract 1364: Novel 4-(pyrimidin-2-yl)morpholines targeting the colchicine-binding site of tubulin. , 2016, , .		0
81	Optochemistry to control the microtubuleÂcytoskeleton. EMBO Journal, 2015, 34, 2114-2116.	3.5	4
82	Control of microtubule organization and dynamics: two ends in the limelight. Nature Reviews Molecular Cell Biology, 2015, 16, 711-726.	16.1	733
83	Fast native-SAD phasing for routine macromolecular structure determination. Nature Methods, 2015, 12, 131-133.	9.0	120
84	Abstract 671: BKM120-mediated G2 arrest: Structural and functional segregation of off-target action and Pl3K inhibition. , 2015 , , .		1
85	RÃ1∕4cktitelbild: Structural Basis of Microtubule Stabilization by Laulimalide and Peloruside A (Angew.) Tj ETQ	q1_1.0.784 1.6	4314 rgBT /C
86	Actin–microtubule coordination at growing microtubule ends. Nature Communications, 2014, 5, 4778.	5.8	126
87	In Vitro Reconstitution of Dynamic Microtubules Interacting with Actin Filament Networks. Methods in Enzymology, 2014, 540, 301-320.	0.4	24
88	Structural Basis of Microtubule Stabilization by Laulimalide and Pelorusideâ€A. Angewandte Chemie - International Edition, 2014, 53, 1621-1625.	7.2	154
89	The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization. Journal of Molecular Biology, 2014, 426, 1848-1860.	2.0	240
90	Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature, 2014, 505, 108-111.	13.7	103

#	Article	IF	Citations
91	A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Human Molecular Genetics, 2014, 23, 5940-5949.	1.4	63
92	A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13817-13821.	3.3	229
93	Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nature Cell Biology, 2014, 16, 804-811.	4.6	100
94	Localizing Chemical Groups while Imaging Single Native Proteins by High-Resolution Atomic Force Microscopy. Nano Letters, 2014, 14, 2957-2964.	4.5	48
95	Native Architecture of the Centriole Proximal Region Reveals Features Underlying Its 9-Fold Radial Symmetry. Current Biology, 2013, 23, 1620-1628.	1.8	113
96	Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science, 2013, 339, 587-590.	6.0	436
97	<i>Caenorhabditis elegans</i> centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11373-11378.	3.3	54
98	End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8900-8905.	3.3	101
99	Structural basis of tubulin tyrosination by tubulin tyrosine ligase. Journal of Cell Biology, 2013, 200, 259-270.	2.3	189
100	Structural Basis for the Oligomerization-State Switch from a Dimer to a Trimer of an Engineered Cortexillin-1 Coiled-Coil Variant. PLoS ONE, 2013, 8, e63370.	1.1	2
101	End Binding Proteins Are Obligatory Dimers. PLoS ONE, 2013, 8, e74448.	1.1	32
102	ELM-the database of eukaryotic linear motifs. Nucleic Acids Research, 2012, 40, D242-D251.	6.5	290
103	Sequence Determinants of a Microtubule Tip Localization Signal (MtLS). Journal of Biological Chemistry, 2012, 287, 28227-28242.	1.6	44
104	Cooperative Stabilization of Microtubule Dynamics by EB1 and CLIP-170 Involves Displacement of Stably Bound P _i at Microtubule Ends. Biochemistry, 2012, 51, 3021-3030.	1.2	20
105	Influence of 63Ser Phosphorylation and Dephosphorylation on the Structure of the Stathmin Helical Nucleation Sequence: A Molecular Dynamics Study. Biochemistry, 2012, 51, 8455-8463.	1.2	7
106	Tyrosine-dependent capture of CAP-Gly domainâ€containing proteins in complex mixture by EB1 C-terminal peptidic probes. Journal of Proteomics, 2012, 75, 3605-3616.	1.2	3
107	Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150glued. Journal of Structural Biology, 2012, 177, 160-167.	1.3	36
108	A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. Current Biology, 2012, 22, 1800-1807.	1.8	192

#	Article	IF	Citations
109	Probing the Structure and Dynamics of Proteins by Combining Molecular Dynamics Simulations and Experimental NMR Data. Journal of Chemical Theory and Computation, 2012, 8, 3430-3444.	2.3	13
110	Structural Basis of the 9-Fold Symmetry of Centrioles. Cell, 2011, 144, 364-375.	13.5	317
111	Microtubule End Binding: EBs Sense the Guanine Nucleotide State. Current Biology, 2011, 21, R283-R285.	1.8	19
112	SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase. Journal of Cell Biology, 2011, 193, 1083-1099.	2.3	116
113	Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice. Molecular Biology of the Cell, 2011, 22, 2912-2923.	0.9	59
114	Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. Journal of Biomolecular NMR, 2010, 47, 221-235.	1.6	31
115	In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends. Current Biology, 2010, 20, 1717-1722.	1.8	130
116	Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection. BMC Biotechnology, 2010, 10, 56.	1.7	39
117	Exploring the trigger sequence of the GCN4 coiledâ€coil: Biased molecular dynamics resolves apparent inconsistencies in NMR measurements. Protein Science, 2010, 19, 2462-2474.	3.1	11
118	Microtubule +TIPs at a glance. Journal of Cell Science, 2010, 123, 3415-3419.	1.2	236
119	Molecular basis of coiled-coil oligomerization-state specificity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19850-19855.	3.3	66
120	Molecular Insights into Mammalian End-binding Protein Heterodimerization. Journal of Biological Chemistry, 2010, 285, 5802-5814.	1.6	48
121	Drosophila Stathmins Bind Tubulin Heterodimers with High and Variable Stoichiometries. Journal of Biological Chemistry, 2010, 285, 11667-11680.	1.6	17
122	Insights into Peroxisome Function from the Structure of PEX3 in Complex with a Soluble Fragment of PEX19. Journal of Biological Chemistry, 2010, 285, 25410-25417.	1.6	46
123	Laminin chain assembly is regulated by specific coiled-coil interactions. Journal of Structural Biology, 2010, 170, 398-405.	1.3	41
124	Regulation of Microtubule Dynamic Instability in Vitro by Differentially Phosphorylated Stathmin. Journal of Biological Chemistry, 2009, 284, 15640-15649.	1.6	73
125	Solidâ€State NMR Spectroscopy Reveals that <i>E.â€coli</i> Inclusion Bodies of HETâ€s(218 – 289) a Amyloids. Angewandte Chemie - International Edition, 2009, 48, 4858-4860.	re 7.2	73
126	Automated unrestricted multigene recombineering for multiprotein complex production. Nature Methods, 2009, 6, 447-450.	9.0	98

#	Article	lF	Citations
127	An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal. Cell, 2009, 138, 366-376.	13.5	594
128	Mammalian end binding proteins control persistent microtubule growth. Journal of Cell Biology, 2009, 184, 691-706.	2.3	331
129	High-level Expression and Purification of a Designed Angiopoietin-1 Chimeric Protein, COMP-Ang1, Produced in Chinese Hamster Ovary Cells. Protein Journal, 2008, 27, 319-326.	0.7	16
130	Exploring the Conserved Water Site and Hydration of a Coiledâ€Coil Trimerisation Motif: A MD Simulation Study. ChemBioChem, 2008, 9, 1749-1756.	1.3	7
131	Polymorphism in an Amyloidâ€Like Fibrilâ€Forming Model Peptide. Angewandte Chemie - International Edition, 2008, 47, 5842-5845.	7.2	53
132	Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology, 2008, 9, 309-322.	16.1	908
133	STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER. Current Biology, 2008, 18, 177-182.	1.8	378
134	Capturing protein tails by CAP-Gly domains. Trends in Biochemical Sciences, 2008, 33, 535-545.	3.7	106
135	Atomic Models of De Novo Designed ccl ² -Met Amyloid-Like Fibrils. Journal of Molecular Biology, 2008, 376, 898-912.	2.0	34
136	Suppression of Microtubule Dynamic Instability by the +TIP Protein EB1 and Its Modulation by the CAP-Gly Domain of p150Glued. Biochemistry, 2008, 47, 779-786.	1.2	69
137	Motor Neuron Disease-Associated Mutant Vesicle-Associated Membrane Protein-Associated Protein (VAP) B Recruits Wild-Type VAPs into Endoplasmic Reticulum-Derived Tubular Aggregates. Journal of Neuroscience, 2007, 27, 9801-9815.	1.7	203
138	Molecular basis of coiled-coil formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7062-7067.	3.3	116
139	Structural basis for the specific inhibition of protein kinase G, a virulence factor of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12151-12156.	3.3	152
140	Structure and thermodynamics of the tubulin–stathmin interaction. Journal of Structural Biology, 2007, 158, 137-147.	1.3	75
141	Production of in vitro amplified DNA pseudolibraries and high-throughput cDNA target amplification. BMC Biotechnology, 2007, 7, 31.	1.7	3
142	The Caenorhabditis elegans septin complex is nonpolar. EMBO Journal, 2007, 26, 3296-3307.	3.5	130
143	Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nature Structural and Molecular Biology, 2007, 14, 249-250.	3.6	137
144	Structure-function relationship of CAP-Gly domains. Nature Structural and Molecular Biology, 2007, 14, 959-967.	3.6	176

#	Article	IF	Citations
145	Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Science, 2007, 16, 1349-1359.	3.1	99
146	Key Interaction Modes of Dynamic +TIP Networks. Molecular Cell, 2006, 23, 663-671.	4.5	160
147	De novo design of a two-stranded coiled-coil switch peptide. Journal of Structural Biology, 2006, 155, 146-153.	1.3	41
148	13C, 15N Resonance Assignment of Parts of the HET-s Prion Protein in its Amyloid Form. Journal of Biomolecular NMR, 2006, 34, 75-87.	1.6	91
149	Control of Intrinsically Disordered Stathmin by Multisite Phosphorylation*. Journal of Biological Chemistry, 2006, 281, 16078-16083.	1.6	45
150	Structure of the Extracellular Domain of Tie Receptor Tyrosine Kinases and Localization of the Angiopoietin-binding Epitope. Journal of Biological Chemistry, 2006, 281, 28408-28414.	1.6	35
151	Structural insights into the EB1?APC interaction. EMBO Journal, 2005, 24, 261-269.	3.5	138
152	Structural insights into the EB1–APC interaction. EMBO Journal, 2005, 24, 872-872.	3.5	4
153	Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435, 519-522.	13.7	651
154	Molecular-Dynamics Simulations of C- and N-Terminal Peptide Derivatives of GCN4-p1 in Aqueous Solution. Chemistry and Biodiversity, 2005, 2, 1086-1104.	1.0	17
155	Design of a Coiled-Coil-based Model Peptide System to Explore the Fundamentals of Amyloid Fibril Formation. International Journal of Peptide Research and Therapeutics, 2005, 11, 43-52.	0.9	5
156	Oligomerization and Multimerization Are Critical for Angiopoietin-1 to Bind and Phosphorylate Tie2. Journal of Biological Chemistry, 2005, 280, 20126-20131.	1.6	134
157	A conserved trimerization motif controls the topology of short coiled coils. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13891-13896.	3.3	88
158	Association of the Leukocyte Plasma Membrane with the Actin Cytoskeleton through Coiled Coil-mediated Trimeric Coronin 1 Molecules. Molecular Biology of the Cell, 2005, 16, 2786-2798.	0.9	112
159	COMP-Ang1: A designed angiopoietin-1 variant with nonleaky angiogenic activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5547-5552.	3.3	236
160	Exploring amyloid formation by a de novo design. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4435-4440.	3.3	166
161	Thermodynamics of the Op18/Stathmin-Tubulin Interaction. Journal of Biological Chemistry, 2003, 278, 38926-38934.	1.6	42
162	Isotope-Tagged Cross-Linking Reagents. A New Tool in Mass Spectrometric Protein Interaction Analysis. Analytical Chemistry, 2001, 73, 1927-1934.	3.2	209

#	Article	IF	CITATIONS
163	Phosphorylation disrupts the central helix in Op18/stathmin and suppresses binding to tubulin. EMBO Reports, 2001, 2, 505-510.	2.0	52
164	An Intrahelical Salt Bridge within the Trigger Site Stabilizes the GCN4 Leucine Zipper. Journal of Biological Chemistry, 2001, 276, 13685-13688.	1.6	47
165	Influence of the effector peptide of MARCKS-related protein on actin polymerization: a kinetic analysis. Biophysical Chemistry, 2000, 85, 169-177.	1.5	10
166	The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure, 2000, 8, 223-230.	1.6	114
167	Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO Journal, 2000, 19, 572-580.	3.5	92
168	Interaction between Actin and the Effector Peptide of MARCKS-related Protein. Journal of Biological Chemistry, 2000, 275, 20873-20879.	1.6	41
169	Polymerization and structure of nucleotide-free actin filaments 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2000, 295, 517-526.	2.0	68
170	Polymerization, three-dimensional structure and mechanical properties of Dictyostelium versus rabbit muscle actin filaments. Journal of Molecular Biology, 2000, 303, 171-184.	2.0	11
171	MARCKS-Related Protein Binds to Actin without Significantly Affecting Actin Polymerization or Network Structure. Journal of Structural Biology, 2000, 131, 217-224.	1.3	16
172	Imaging biological matter across dimensions: from cells to molecules and atoms. FASEB Journal, 1999, 13, S195-200.	0.2	4
173	Domain analysis of cortexillin I: actin-bundling, PIP2-binding and the rescue of cytokinesis. EMBO Journal, 1999, 18, 5274-5284.	3.5	67
174	Structure, assembly, and dynamics of actin filaments in situ and in vitro., 1999, 47, 38-50.		36
175	Isolation, Electron Microscopic Imaging, and 3-D Visualization of Native Cardiac Thin Myofilaments. Journal of Structural Biology, 1999, 126, 98-104.	1.3	22
176	A distinct 14 residue site triggers coiled-coil formation in cortexillin I. EMBO Journal, 1998, 17, 1883-1891.	3.5	113
177	Actin: Dissecting the Structural Basis of Its Oligomerization, Polymerization, and Polymorphism. Biological Bulletin, 1998, 194, 337-341.	0.7	2
178	Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. Journal of Molecular Biology, 1998, 276, 1-6.	2.0	90
179	Rat GTP cyclohydrolase I is a homodecameric protein complex containing high-affinity calcium-binding sites 1 1Edited by W. Baumeister. Journal of Molecular Biology, 1998, 279, 189-199.	2.0	21
180	An atomic model of crystalline actin tubes: combining electron microscopy with X-ray crystallography. Journal of Molecular Biology, 1998, 278, 703-711.	2.0	28

#	Article	IF	CITATIONS
181	Crystallization and Preliminary X-Ray Diffraction Analysis of the 190-ÃLong Coiled-Coil Dimerization Domain of the Actin-Bundling Protein Cortexillin I fromDictyostelium discoideum. Journal of Structural Biology, 1998, 122, 293-296.	1.3	7
182	An autonomous folding unit mediates the assembly of two-stranded coiled coils. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13419-13424.	3.3	166
183	A Correlative Analysis of Actin Filament Assembly, Structure, and Dynamics. Journal of Cell Biology, 1997, 138, 559-574.	2.3	113
184	Actin: From Cell Biology to Atomic Detail. Journal of Structural Biology, 1997, 119, 295-320.	1.3	98
185	Cortexillins, Major Determinants of Cell Shape and Size, Are Actin-Bundling Proteins with a Parallel Coiled-Coil Tail. Cell, 1996, 86, 631-642.	13.5	172