Hiroshi Nishihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5539076/publications.pdf

Version: 2024-02-01

231 8,896 papers citations

239

all docs

239 docs citations 46984 47 h-index

> 239 times ranked

86 g-index

8105 citing authors

#	Article	IF	Citations
1	Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity. Advanced Materials, 2022, 34, e2106204.	11.1	24
2	Amplification of luminescence of stable radicals by coordination to NHC–gold(⟨scp⟩i⟨ scp⟩) complex. Chemical Communications, 2022, 58, 2560-2563.	2.2	10
3	An Organic Quantum Spin Liquid with Triangular Lattice: Spinon Fermi Surface and Scaling Behavior. Bulletin of the Chemical Society of Japan, 2022, 95, 306-313.	2.0	1
4	Two-Dimensional Metal–Organic Framework Acts as a Hydrogen Evolution Cocatalyst for Overall Photocatalytic Water Splitting. ACS Catalysis, 2022, 12, 3881-3889.	5.5	32
5	A Series of D–A–D Structured Disilane-Bridged Triads: Structure and Stimuli-Responsive Luminescence Studies. Journal of Organic Chemistry, 2022, 87, 8928-8938.	1.7	9
6	Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coordination Chemistry Reviews, 2022, 470, 214693.	9.5	18
7	A ground-state-dominated magnetic field effect on the luminescence of stable organic radicals. Chemical Science, 2021, 12, 2025-2029.	3.7	41
8	An Open-shell, Luminescent, Two-Dimensional Coordination Polymer with a Honeycomb Lattice and Triangular Organic Radical. Journal of the American Chemical Society, 2021, 143, 4329-4338.	6.6	57
9	Determination of Chemical Structure of Bis(dithiolato)iron Nanosheet. Chemistry Letters, 2021, 50, 576-579.	0.7	10
10	Radical-Based Coordination Polymers as a Platform for Magnetoluminescence. Journal of the American Chemical Society, 2021, 143, 5610-5615.	6.6	46
11	Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Accounts of Chemical Research, 2021, 54, 3003-3015.	7.6	13
12	Twoâ€Dimensional Bis(dithiolene)iron(II) Selfâ€Powered UV Photodetectors with Ultrahigh Air Stability. Advanced Science, 2021, 8, 2100564.	5.6	19
13	Electrochemically Synthesized Bis(diimino)metal Coordination Nanosheets as Ultrastable Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 5403-5407.	2.5	7
14	Ultralong π-Conjugated Bis(terpyridine)metal Polymer Wires Covalently Bound to a Carbon Electrode: Fast Redox Conduction and Redox Diode Characteristics. Molecules, 2021, 26, 4267.	1.7	4
15	Expansion of Photostable Luminescent Radicals by <i>Metaâ€</i> Substitution. Chemistry - an Asian Journal, 2021, 16, 2538-2544.	1.7	13
16	Dirac-point Shift of Graphene-FET in the Presence of Ionic Molecules or Surfactants. Chemistry Letters, 2021, 50, 1639-1642.	0.7	0
17	Luminescent Behavior Elucidation of a Disilaneâ€Bridged D–A–D Triad Composed of Phenothiazine and Thienopyrazine. Angewandte Chemie, 2021, 133, 23053.	1.6	8
18	Luminescent Behavior Elucidation of a Disilaneâ€Bridged D–A–D Triad Composed of Phenothiazine and Thienopyrazine. Angewandte Chemie - International Edition, 2021, 60, 22871-22878.	7.2	30

#	Article	IF	CITATIONS
19	Tri―and Tetranuclear Metalâ€5tring Complexes with Metallophilic d ¹⁰ –d ¹⁰ Interactions. Chemistry - A European Journal, 2020, 26, 275-284.	1.7	23
20	Construction of Bis(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)iron(II) Coordination Polymer for Incorporation of Magnetic Function. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 147-152.	1.9	2
21	Selective Formation and SHG Intensity of Noncentrosymmetric and Centrosymmetric 1,1,2,2-Tetramethyl-1-(4-(<i>N,N</i> -dimethylamino)phenyl)-2-(2′-cyanophenyl)disilane Crystals under External Stimuli. Journal of Physical Chemistry C, 2020, 124, 17450-17458.	1.5	13
22	Excimer emission and magnetoluminescence of radical-based zinc(<scp>ii</scp>) complexes doped in host crystals. Chemical Communications, 2020, 56, 11195-11198.	2.2	25
23	Frontispiece: Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry - A European Journal, 2020, 26, .	1.7	0
24	Redox-active, luminescent coordination nanosheet capsules containing magnetite. Scientific Reports, 2020, 10, 13818.	1.6	9
25	Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry - A European Journal, 2020, 26, 11441-11450.	1.7	3
26	Photoelectric Conversion System Composed of Gene-Recombined Photosystem I and Platinum Nanoparticle Nanosheet. Langmuir, 2020, 36, 6429-6435.	1.6	7
27	Thermosalience in Macrocycle-Based Soft Crystals via Anisotropic Deformation of Disilanyl Architecture. Journal of the American Chemical Society, 2020, 142, 12651-12657.	6.6	44
28	Solution-processed organometallic quasi-two-dimensional nanosheets as a hole buffer layer for organic light-emitting devices. Nanoscale, 2020, 12, 6983-6990.	2.8	14
29	Tailoring the Electrochemical Properties of Two-Dimensional Bis(diimino)metal Coordination Frameworks by Introducing Co/Ni Heterometallic Structures. Inorganic Chemistry, 2020, 59, 10604-10610.	1.9	16
30	High-energy, Long-cycle-life Secondary Battery with Electrochemically Pre-doped Silicon Anode. Scientific Reports, 2020, 10, 3208.	1.6	7
31	â€~Click' conjugated porous polymer nanofilm with a large domain size created by a liquid/liquid interfacial protocol. Chemical Communications, 2020, 56, 3677-3680.	2.2	5
32	Effect of the Tris(trimethylsilyl)silyl Group on the Fluorescence and Triplet Yields of Oligothiophenes. Journal of Physical Chemistry C, 2020, 124, 3277-3286.	1.5	20
33	Reversible Energy Storage in Layered Copper-Based Coordination Polymers: Unveiling the Influence of the Ligand's Functional Group on Their Electrochemical Properties. Journal of Physical Chemistry C, 2020, 124, 9215-9224.	1.5	28
34	Enhancement of the Photofunction of Phosphorescent Pt(II) Cyclometalated Complexes Driven by Substituents: Solid-State Luminescence and Circularly Polarized Luminescence. Journal of Organic Chemistry, 2019, 84, 10749-10756.	1.7	29
35	Electrochromic triphenylamine-based cobalt(<scp>ii</scp>) complex nanosheets. Journal of Materials Chemistry C, 2019, 7, 9159-9166.	2.7	47
36	Photosensing System Using Photosystem I and Gold Nanoparticle on Graphene Field-Effect Transistor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42773-42779.	4.0	24

#	Article	IF	CITATIONS
37	Graphdiynes: The Accelerating World of Graphdiynes (Adv. Mater. 42/2019). Advanced Materials, 2019, 31, 1970297.	11.1	4
38	Electrochemical interfacing of Prussian blue nanocrystals with an ITO electrode modified with a thin film containing a Ru complex. Journal of Materials Chemistry C, 2019, 7, 12491-12501.	2.7	9
39	Luminescent Radicalâ€Excimer: Excitedâ€State Dynamics of Luminescent Radicals in Doped Host Crystals. Angewandte Chemie, 2019, 131, 2632-2637.	1.6	11
40	One-dimensional magnetic chain composed of Cu ^{II} and polychlorinated dipyridylphenylmethyl radical: temperature-dependent Jahn–Teller distortion correlated to π-conjugation and magnetic properties. Dalton Transactions, 2019, 48, 7090-7093.	1.6	7
41	The Accelerating World of Graphdiynes. Advanced Materials, 2019, 31, e1804211.	11.1	86
42	Frontispiz: Luminescent Radicalâ€Excimer: Excitedâ€State Dynamics of Luminescent Radicals in Doped Host Crystals. Angewandte Chemie, 2019, 131, .	1.6	1
43	Interfacial transmetallation synthesis of a platinadithiolene nanosheet as a potential 2D topological insulator. Chemical Science, 2019, 10, 5218-5225.	3.7	41
44	Frontispiece: Luminescent Radicalâ€Excimer: Excitedâ€State Dynamics of Luminescent Radicals in Doped Host Crystals. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
45	NIR Emission and Acid-Induced Intramolecular Electron Transfer Derived from a SOMO–HOMO Converted Non-Aufbau Electronic Structure. Journal of Physical Chemistry C, 2019, 123, 4417-4423.	1.5	36
46	Effects of Substituents on the Blue Luminescence of Disilane-Linked Donorâ€'Acceptorâ€'Donor Triads. Molecules, 2019, 24, 521.	1.7	12
47	A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification. Science Advances, 2019, 5, eaau0637.	4.7	9
48	Luminescent Radicalâ€Excimer: Excitedâ€State Dynamics of Luminescent Radicals in Doped Host Crystals. Angewandte Chemie - International Edition, 2019, 58, 2606-2611.	7.2	47
49	Aurophilicity and Photoluminescence of (6â€Diphenylpnicogenoacenaphthâ€5â€yl)gold Compounds. European Journal of Inorganic Chemistry, 2019, 2019, 647-659.	1.0	12
50	Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Family: A Triphenylene-Cored Analogue. ACS Applied Materials & Expansion of the Graphdiyne Access Access Applied Access Access Applied Access Acc	4.0	58
51	Multielectronâ€Transferâ€based Rechargeable Energy Storage of Twoâ€Dimensional Coordination Frameworks with Nonâ€Innocent Ligands. Angewandte Chemie - International Edition, 2018, 57, 8886-8890.	7.2	182
52	Oxidation-promoted Interfacial Synthesis of Redox-active Bis(diimino)nickel Nanosheet. Chemistry Letters, 2018, 47, 126-129.	0.7	18
53	Dinuclear Diphosphine Complexes of Gold(I) Alkynyls, the Effects of Alkynyl Substituents onto Photophysical Behavior. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 308-316.	0.6	5
54	A luminescent organic radical with two pyridyl groups: high photostability and dual stimuli-responsive properties, with theoretical analyses of photophysical processes. Chemical Science, 2018, 9, 1996-2007.	3.7	67

#	Article	IF	CITATIONS
55	Aggregation-Induced Emission Enhancement from Disilane-Bridged Donor–Acceptor–Donor Luminogens Based on the Triarylamine Functionality. ACS Applied Materials & Interfaces, 2018, 10, 12164-12172.	4.0	45
56	Cation-responsive turn-on fluorescence and absence of heavy atom effects of pyridyl-substituted triarylmethyl radicals. Chemical Communications, 2018, 54, 615-618.	2.2	38
57	Innentitelbild: Magnetoluminescence in a Photostable, Brightly Luminescent Organic Radical in a Rigid Environment (Angew. Chem. 39/2018). Angewandte Chemie, 2018, 130, 12768-12768.	1.6	О
58	Multielectronâ€Transferâ€based Rechargeable Energy Storage of Twoâ€Dimensional Coordination Frameworks with Nonâ€Innocent Ligands. Angewandte Chemie, 2018, 130, 9024-9028.	1.6	34
59	Magnetoluminescence in a Photostable, Brightly Luminescent Organic Radical in a Rigid Environment. Angewandte Chemie, 2018, 130, 12893-12897.	1.6	23
60	A pyrazine-incorporated graphdiyne nanofilm as a metal-free electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22189-22194.	5.2	44
61	Magnetoluminescence in a Photostable, Brightly Luminescent Organic Radical in a Rigid Environment. Angewandte Chemie - International Edition, 2018, 57, 12711-12715.	7.2	71
62	Photocurrent Generation of Reconstituted Photosystem II on a Self-Assembled Gold Film. Langmuir, 2017, 33, 1351-1358.	1.6	18
63	A simple zinc(<scp>ii</scp>) complex that features multi-functional luminochromism induced by reversible ligand dissociation. Chemical Communications, 2017, 53, 3657-3660.	2.2	23
64	Photofunctionality in Porphyrinâ€Hybridized Bis(dipyrrinato)zinc(II) Complex Micro―and Nanosheets. Angewandte Chemie - International Edition, 2017, 56, 3526-3530.	7. 2	92
65	Photofunctionality in Porphyrin-Hybridized Bis(dipyrrinato)zinc(II) Complex Micro- and Nanosheets. Angewandte Chemie, 2017, 129, 3580-3584.	1.6	25
66	Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coordination Chemistry Reviews, 2017, 346, 139-149.	9.5	63
67	Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface. Journal of the American Chemical Society, 2017, 139, 3145-3152.	6.6	438
68	Conjugates between photosystem I and a carbon nanotube for a photoresponse device. Photosynthesis Research, 2017, 133, 155-162.	1.6	11
69	Liquid/Liquid Interfacial Synthesis of a Click Nanosheet. Chemistry - A European Journal, 2017, 23, 8443-8449.	1.7	17
70	Access to Chiral Silicon Centers for Application to Circularly Polarized Luminescence Materials. Journal of Organic Chemistry, 2017, 82, 6108-6117.	1.7	69
71	Coordination nanosheets (CONASHs): strategies, structures and functions. Chemical Communications, 2017, 53, 5781-5801.	2.2	144
72	Conducting π-Conjugated Bis(iminothiolato)nickel Nanosheet. Chemistry Letters, 2017, 46, 1072-1075.	0.7	48

#	Article	IF	Citations
73	Coordination Nanosheets Based on Terpyridine–Zinc(II) Complexes: As Photoactive Host Materials. Journal of the American Chemical Society, 2017, 139, 5359-5366.	6.6	104
74	Supramolecular Two-Dimensional Network Mediated via Sulfurâ \in TMs Ï f -Holes in a Conducting Molecular Crystal: Effects of Its Rigidity on Physical Properties and Structural Transition. Crystal Growth and Design, 2017, 17, 2203-2210.	1.4	10
75	Solvent-Controlled Doublet Emission of an Organometallic Gold(I) Complex with a Polychlorinated Diphenyl(4-pyridyl)methyl Radical Ligand: Dual Fluorescence and Enhanced Emission Efficiency. Inorganic Chemistry, 2017, 56, 3909-3915.	1.9	20
76	Bis(aminothiolato)nickel nanosheet as a redox switch for conductivity and an electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 8078-8085.	3.7	120
77	Bis(dipyrrinato)zinc(II) Complex Chiroptical Wires: Exfoliation into Single Strands and Intensification of Circularly Polarized Luminescence. Journal of the American Chemical Society, 2017, 139, 16024-16027.	6.6	110
78	Multifunctional Octamethyltetrasila [2.2] cyclophanes: Conformational Variations, Circularly Polarized Luminescence, and Organic Electroluminescence. Journal of the American Chemical Society, 2017, 139, 11214-11221.	6.6	73
79	Mechano-, thermo-, solvato-, and vapochromism in bis(acetato-κ ¹ 0)[4′-(4-(diphenylamino)phenyl)](2,2′:6′,2′′-terpyridine-κ ^{3<td>p>¼,½l′</td><td>,Nâ∰′)zin</td>}	p> ¼,½ l′	,Nâ∰′)zin
80	Effects of Substitution on Solid-State Fluorescence in 9-Aryl-9-methyl-9H-9-silafluorenes. Molecules, 2016, 21, 1173.	1.7	4
81	Unusual Reactivity of Group 14 Hydrides toward Organic Halides: Synthetic Studies and Application to Functional Materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 1098-1107.	0.0	27
82	Creation of Electro- and Photo-functional Molecular Systems Based on Coordination Programming. Bulletin of Japan Society of Coordination Chemistry, 2016, 67, 2-9.	0.1	1
83	Heteroleptic [Bis(oxazoline)](dipyrrinato)zinc(II) Complexes: Bright and Circularly Polarized Luminescence from an Originally Achiral Dipyrrinato Ligand. Angewandte Chemie - International Edition, 2016, 55, 1377-1381.	7.2	75
84	Dissymmetric Bis(dipyrrinato)zinc(II) Complexes: Rich Variety and Bright Red to Near-Infrared Luminescence with a Large Pseudo-Stokes Shift. Journal of the American Chemical Society, 2016, 138, 5666-5677.	6.6	67
85	Modulated Luminescence of a Stable Openâ€Shell Triarylmethyl Radical: Effects of Chemical Modification on Its Electronic Structure and Physical Properties. Chemistry - A European Journal, 2016, 22, 17725-17733.	1.7	29
86	Effective Method for Micro-Patterning Arene-Terminated Monolayers on a Si(111) Electrode. Langmuir, 2016, 32, 6825-6829.	1.6	4
87	Synergistic luminescence enhancement of a pyridyl-substituted triarylmethyl radical based on fluorine substitution and coordination to gold. Chemical Communications, 2016, 52, 13393-13396.	2.2	43
88	Cross-Sectional TEM Analysis of an ITO Surface Coated with Photosystem I and Molecular Wires. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1309-1312.	1.9	5
89	Bright Solidâ€State Emission of Disilaneâ€Bridged Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Chromophores. Angewandte Chemie - International Edition, 2016, 55, 3022-3026.	7.2	51
90	Bright Solid‧tate Emission of Disilaneâ€Bridged Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Chromophores. Angewandte Chemie, 2016, 128, 3074-3078.	1.6	8

#	Article	IF	CITATIONS
91	Bis(dipyrrinato)zinc(II) Complexes: Emission in the Solid State. Inorganic Chemistry, 2016, 55, 5732-5734.	1.9	40
92	Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews, 2016, 116, 2886-2936.	23.0	549
93	The coordination nanosheet (CONASH). Coordination Chemistry Reviews, 2016, 320-321, 118-128.	9.5	91
94	Electrochemical fabrication of one-dimensional porphyrinic wires on electrodes. Inorganic Chemistry Frontiers, 2016, 3, 370-375.	3.0	4
95	Coordination Programming of Two-Dimensional Metal Complex Frameworks. Langmuir, 2016, 32, 2527-2538.	1.6	79
96	Bis(terpyridine)iron(II) Complex Wires with a Bithiophene Linker for Superior Long-range Electron Transport. Chemistry Letters, 2015, 44, 1211-1213.	0.7	8
97	Interfacial Synthesis of Electrically Conducting Palladium Bis(dithiolene) Complex Nanosheet. ChemPlusChem, 2015, 80, 1255-1258.	1.3	106
98	Modulation of Electronic State of Ï€â€Conjugated Nickelladithiolene Complex Nanosheet. Macromolecular Symposia, 2015, 351, 78-80.	0.4	10
99	Electrochromic Bis(terpyridine)metal Complex Nanosheets. Journal of the American Chemical Society, 2015, 137, 4681-4689.	6.6	221
100	Electron Transport Dynamics in Redox-Molecule-Terminated Branched Oligomer Wires on Au(111). Journal of the American Chemical Society, 2015, 137, 734-741.	6.6	49
101	Enhanced Luminescent Properties of an Openâ€Shell (3,5â€Dichloroâ€4â€pyridyl)bis(2,4,6â€trichlorophenyl)methyl Radical by Coordination to Gold. Angewandte Chemie - International Edition, 2015, 54, 3731-3734.	7.2	78
102	Optical Properties of Disilane-Bridged Donor–Acceptor Architectures: Strong Effect of Substituents on Fluorescence and Nonlinear Optical Properties. Journal of the American Chemical Society, 2015, 137, 1024-1027.	6.6	77
103	Meso-N-arylamino- and N, N-diarylaminoporphyrinoids: Syntheses, properties and applications. Journal of Porphyrins and Phthalocyanines, 2015, 19, 21-31.	0.4	6
104	New talent: Asia-Pacific. Dalton Transactions, 2015, 44, 15074-15074.	1.6	3
105	Highly photostable luminescent open-shell (3,5-dihalo-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radicals: significant effects of halogen atoms on their photophysical and photochemical properties. RSC Advances, 2015, 5, 64802-64805.	1.7	52
106	Synthesis, characterization, and physical properties of oligo(1-(N,N-dimethylamino)pyrrole)s and their doped forms, precursors of candidates for molecular flat-band ferromagnets. Journal of Materials Chemistry C, 2015, 3, 4316-4320.	2.7	2
107	A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nature Communications, 2015, 6, 6713.	5.8	290
108	Intramolecular Ferromagnetic Radical–Cull Coupling in a Cull Complex Ligated with Pyridyl-Substituted Triarylmethyl Radicals. Inorganic Chemistry, 2015, 54, 4186-4188.	1.9	23

#	Article	IF	Citations
109	New aspects in bis and tris(dipyrrinato)metal complexes: bright luminescence, self-assembled nanoarchitectures, and materials applications. Journal of Materials Chemistry A, 2015, 3, 15357-15371.	5.2	94
110	Spin-Reconstructed Proton-Coupled Electron Transfer in a Ferrocene–Nickeladithiolene Hybrid. Journal of the American Chemical Society, 2015, 137, 6448-6451.	6.6	9
111	Heteroleptic bis(dipyrrinato)copper(<scp>ii</scp>) and nickel(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 15103-15106.	1.6	25
112	Ï€-Conjugated bis(terpyridine)metal complex molecular wires. Chemical Society Reviews, 2015, 44, 7698-7714.	18.7	133
113	Rapid Electron Transport Phenomenon in the Bis(terpyridine) Metal Complex Wire: Marcus Theory and Electrochemical Impedance Spectroscopy Study. Journal of Physical Chemistry Letters, 2015, 6, 3821-3826.	2.1	10
114	Bis(dipyrrinato)metal(<scp>ii</scp>) coordination polymers: crystallization, exfoliation into single wires, and electric conversion ability. Chemical Science, 2015, 6, 2853-2858.	3.7	59
115	Preparation of Pd Nanoparticles with Tetrahedral, Spherical, Plate, and Feather Shapes by Capping with 1-Pentyl Isocyanide. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 140-144.	1.9	4
116	Synthesis and Hydrogen Storage Properties of Palladium Nanoparticle–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 208-213.	1.9	4
117	Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: From the water-oxidizing complex in photosystem II to nano-sized manganese oxides. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1395-1410.	0.5	15
118	Luminescence, Stability, and Proton Response of an Openâ€Shell (3,5â€Dichloroâ€4â€pyridyl)bis(2,4,6â€ŧrichlorophenyl)methyl Radical. Angewandte Chemie - International Edition, 2014, 53, 11845-11848.	7.2	176
119	Ordered alignment of a one-dimensional π-conjugated nickel bis(dithiolene) complex polymer produced via interfacial reactions. Chemical Communications, 2014, 50, 8137-8139.	2.2	35
120	Asymmetric dinuclear bis(dipyrrinato)zinc(<scp>ii</scp>) complexes: broad absorption and unidirectional quantitative exciton transmission. Chemical Communications, 2014, 50, 5881-5883.	2.2	28
121	Ï€-Conjugation modification of photochromic and redox-active dimethyldihydropyrene by phenyl- and ethynyl-terpyridines and Ru(bis-terpyridine) complexes. New Journal of Chemistry, 2014, 38, 6114-6124.	1.4	11
122	Reactivity and Electronic Properties of a Ferrocene Molecule Bearing an N,C-Chelated BMes2 Unit. Organometallics, 2014, 33, 1787-1793.	1.1	27
123	Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator. Journal of the American Chemical Society, 2014, 136, 14357-14360.	6.6	395
124	Structures and Optical Properties of Tris(trimethylsilyl)silylated Oligothiophene Derivatives. Journal of Organic Chemistry, 2014, 79, 2974-2979.	1.7	30
125	Bio-inspired photoresponse of porphyrin-attached gold nanoparticles on a field-effect transistor. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1567-1571.	0.5	10
126	Steric Interference on the Redox-conjugated Pyrimidine Ring Rotation of Mono- and Dinuclear Copper Complexes with (4-Methyl-2-pyrimidinyl)imine Ligands. Chemistry Letters, 2014, 43, 1037-1039.	0.7	3

#	Article	IF	Citations
127	Fabrication of Dense and Multilayered Films of a Nickel Bis(dithiolene) Nanosheet by Means of the Langmuir–SchÃÆr Method. Chemistry Letters, 2014, 43, 252-253.	0.7	44
128	Coordination Programming: A New Concept for the Creation of Multifunctional Molecular Systems. Chemistry Letters, 2014, 43, 388-395.	0.7	78
129	Crystal structure of (Z)-1-(ferrocenylethynyl)-10-(phenylimino)anthracen-9(10H)-one from synchrotron X-ray powder diffraction. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 573-576.	0.2	0
130	Coordination programming: science of molecular superstructures towards chemical devices. Dalton Transactions, 2013, 42, 15825.	1.6	5
131	Bis(terpyridine) metal complex wires: Excellent long-range electron transfer ability and controllable intrawire redox conduction on silicon electrode. Coordination Chemistry Reviews, 2013, 257, 1493-1506.	9.5	131
132	Ï€-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. Journal of the American Chemical Society, 2013, 135, 2462-2465.	6.6	717
133	Efficient Electronic Communication in 4,9-Bis(ferrocenylethynyl)dimethyldihydropyrene. Chemistry Letters, 2013, 42, 361-362.	0.7	7
134	Two-way Linkage Photoisomerization of [Ru(2,2′:6′,2′′-terpyridine)(6-{(methylsulfinyl)methyl}picolinate)]BF4. Chemistry Letters, 2013, 42, 17	7-f <mark>8</mark> 7	3
135	Triarylamine-conjugated Bis(terpyridine)–Iron(II) Complex Wires: Rapid and Long-range Electron-transport Ability. Chemistry Letters, 2013, 42, 553-555.	0.7	11
136	Triarylamine-Conjugated Bis(dipyrrinato)zinc(II) Complexes: Impact of Triarylamine on Photochemical Property and Multi-Redox Reaction. Electrochemistry, 2013, 81, 337-339.	0.6	5
137	Benzenedithiolate-bridged Rh2W and RhW Cluster Complexes: Synthesis, Properties, and Formation Mechanism. Chemistry Letters, 2012, 41, 357-359.	0.7	5
138	A New Method To Generate Arene-Terminated Si(111) and Ge(111) Surfaces via a Palladium-Catalyzed Arylation Reaction. Journal of the American Chemical Society, 2012, 134, 20433-20439.	6.6	32
139	Solid-State Ligand-Driven Light-Induced Spin Change at Ambient Temperatures in Bis(dipyrazolylstyrylpyridine)iron(II) Complexes. Inorganic Chemistry, 2012, 51, 5188-5198.	1.9	106
140	Synthesis and Electron Transfer Properties of Metal Complex Oligomer Wires with an Inherent Potential Gradient on Gold Electrode. Macromolecular Symposia, 2012, 317-318, 276-285.	0.4	14
141	An Extremely Bright Heteroleptic Bis(dipyrrinato)zinc(II) Complex. Chemistry - an Asian Journal, 2012, 7, 907-910.	1.7	74
142	Enhanced photocurrent production by photosystem I with modified viologen derivatives. Thin Solid Films, 2012, 520, 5123-5127.	0.8	26
143	Synthesis of photo-switchable 3-FcAB-modified polymer particles. New Journal of Chemistry, 2011, 35, 2146.	1.4	21
144	Bottom-up fabrication of redox-active metal complex oligomer wires on an H-terminated Si(111) surface. Chemical Communications, 2011, 47, 8644.	2.2	41

#	Article	IF	CITATIONS
145	Normal and inverted redox potentials and structural changes tuned by medium effects in [M2Mo(\hat{l} -5-C5Me5)2(S2C6H4)2(CO)2] (M: Co, Rh). Chemical Science, 2011, 2, 1960.	3.7	18
146	Synthesis of vanadium-doped palladium nanoparticles for hydrogen storage materials. Journal of Nanoparticle Research, 2011, 13, 6333-6338.	0.8	10
147	Surface Junction Effects on the Electron Conduction of Molecular Wires. Journal of the American Chemical Society, 2010, 132, 4524-4525.	6.6	93
148	A photosensing system composed of photosystem I, molecular wire, gold nanoparticle, and double surfactants in water. Chemical Communications, 2010, 46, 2557.	2.2	41
149	Facile synthesis of hypersilylated aromatic compounds by palladium-mediated arylation reaction. Chemical Communications, 2010, 46, 7784.	2.2	40
150	Plugging a Molecular Wire into Photosystemâ€I: Reconstitution of the Photoelectric Conversion System on a Gold Electrode. Angewandte Chemie - International Edition, 2009, 48, 1585-1587.	7.2	117
151	Biography of Professor Takakazu Yamamoto. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 1-2.	1.9	0
152	Superior Electronâ€Transport Ability of Ï€â€Conjugated Redox Molecular Wires Prepared by the Stepwise Coordination Method on a Surface. Chemistry - an Asian Journal, 2009, 4, 1361-1367.	1.7	58
153	Efficient Synthesis of Arylsilanes by Cross-coupling of Aromatic Compounds with Hydrosilanes as Silicon Sources. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 778-786.	0.0	32
154	Electronic Communication in the Mixed-valence States of Cyclobutadienecobalt Complexes having Two Ferrocenes and Two Anthraquinones. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 124-130.	1.9	12
155	Synthesis of an Anthraquinoneâ€Bridged bis(terpyridine) Ligand and its Use in the Stepwise Fabrication of Complex Oligomer Wires on Gold. Macromolecular Symposia, 2008, 270, 153-160.	0.4	15
156	Construction of redox- and photo-functional molecular systems on electrode surface for application to molecular devices. Coordination Chemistry Reviews, 2007, 251, 2674-2687.	9.5	93
157	Synthesis of Molecular Wires of Linear and Branched Bis(terpyridine)-Complex Oligomers and Electrochemical Observation of Through-Bond Redox Conduction. Chemistry - an Asian Journal, 2007, 2, 367-376.	1.7	88
158	Synthesis of π-Conjugated Ferrocene-Anthraquinone Alternating Polymers and their Protonation Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 135-141.	1.9	8
159	Synthesis of A New Terpyridine Ligand Combined with Ruthenium(II) Complex and its Usage in the Stepwise Fabrication of Complex Polymer Wires on Gold. Macromolecular Symposia, 2006, 235, 31-38.	0.4	18
160	Redox-Based Functionalities of Multinuclear Metal Complex Systems. , 2006, , 369-397.		2
161	Dithiolato-Bridged [MRu2] (M = Rh, Ir, Ru) Triangular 50e– Cluster Complexes Synthesized by Complete Metal Framework Reconstruction. European Journal of Inorganic Chemistry, 2006, 2006, 2129-2131.	1.0	17
162	Stepwise Preparation of Linear π-Conjugated Bis(terpyridine)metal Polymer Chains at Gold Surface. Chemistry Letters, 2005, 34, 534-535.	0.7	63

#	Article	IF	Citations
163	Electron Transfer in Ferrocene-containing ?-conjugated Polymers. Journal of Inorganic and Organometallic Polymers, 2005, 15, 147-156.	1.5	43
164	Synthesis and physical properties ofi∈-conjugated metallacycle polymers of cobalt and ruthenium. Macromolecular Symposia, 2004, 209, 141-162.	0.4	8
165	Electrochemical Deposition of Biferrocene Derivative-Attached Gold Nanoparticles and the Morphology of the Formed Film. Journal of Physical Chemistry B, 2003, 107, 3703-3711.	1.2	41
166	Electrodeposition of Biferrocene Derivative-Attached Gold Nanoparticles:Â Solvent Effects and Lithographic Assembly. Langmuir, 2003, 19, 8050-8056.	1.6	37
167	Organometallic conducting polymers synthesized by metallacycling polymerization. Macromolecular Symposia, 2003, 196, 27-38.	0.4	26
168	Synthesis of azo-conjugated catecholate complexes and their photo- and proton-responses. Macromolecular Symposia, 2003, 204, 93-102.	0.4	6
169	Proton-Coupled Intramolecular Electron Transfer in Ferrocene-Quinone Conjugated Oligomers and Polymers., 2003,, 135-159.		7
170	Photo- and protonationâ€induced changes in structures and physical properties of azoâ€conjugated metal complex systems. Macromolecular Symposia, 2002, 186, 93-98.	0.4	2
171	Electrochemical construction of an alternating multi-layered structure of palladium and gold nanoparticles attached with biferrocene moietiesElectronic supplementary information (ESI) available: cyclic voltammograms for electrodeposition of BFcPdn/BFcAun. See http://www.rsc.org/suppdata/cc/b2/b207513i/. Chemical Communications, 2002 2578-2579.	2.2	35
172	Formation of a novel porphyrin-gold nanoparticle network film induced by IR light irradiation. Chemical Communications, 2001, , 2476-2477.	2.2	28
173	Preparation of palladium nanoparticles functionalized with biferrocene thiol derivatives and their electro-oxidative deposition. Physical Chemistry Chemical Physics, 2001, 3, 3377-3381.	1.3	40
174	Redox behavior of biferrocene dithiol and disulfide derivatives in SAMs with and without gold clusters on the gold substrate. Physical Chemistry Chemical Physics, 2001, 3, 3427-3430.	1.3	20
175	Reversible trans–cis photoisomerization of azobenzene-attached bipyridine ligands coordinated to cobalt using a single UV light source and the Co(iii)/Co(ii) redox change. Chemical Communications, 2001, , 1656-1657.	2.2	52
176	Electroreductive Deposition of Anthraquinone Derivative Attached Au Clusters:  Optical Properties and Scanning Tunneling Microscopy Observation of the Electrodeposited Cluster Film. Langmuir, 2001, 17, 2363-2370.	1.6	41
177	Effects of Alkyl Chain as a Spacer on Electrochemical Reaction and SEIRA Spectra for Self-assembled Monolayers Having Anthraquinone Redox Center. Electrochemistry, 2001, 69, 980-983.	0.6	7
178	Electron transfer of conjugated polymeric ferrocenes. Macromolecular Symposia, 2000, 156, 21-29.	0.4	3
179	Title is missing!. Journal of Inorganic and Organometallic Polymers, 2000, 10, 209-219.	1.5	7
180	Synthesis and Physical Properties of a π-Conjugated Ruthenium(II) Dinuclear Complex Involving an Azobenzene-Bridged Bis(terpyridine) Ligand. Molecular Crystals and Liquid Crystals, 2000, 343, 193-198.	0.3	38

#	Article	IF	CITATIONS
181	Novel Photoisomerization Behavior of Rh Binuclear Complexes Involving an Azobenzene-Bridged Bis(terpyridine) Ligand. Strong Effects of Counterion and Solvent and the Induction of Redox Potential Shift. Inorganic Chemistry, 2000, 39, 3438-3439.	1.9	55
182	Novel Photoisomerization of Azoferrocene with a Low-Energy MLCT Band and Significant Change of the Redox Behavior between thecis-andtrans-Isomers. Journal of the American Chemical Society, 2000, 122, 12373-12374.	6.6	60
183	Synthesis, Structure, and Redox Properties of [{(5-C5H5)Co(S2C6H4)}2Mo(CO)2], a Novel Metalladithiolene Cluster. Angewandte Chemie - International Edition, 1999, 38, 1098-1100.	7.2	44
184	Oxidative-Decomposition and Electron-Transfer Kinetics of Self-Assembled Monolayers of Biferrocene-Terminated Alkanethiol on Gold. Electrochemistry, 1999, 67, 1129-1131.	0.6	8
185	Challenge of Organic Synthesis-toward the 21st Century. Organic Electronic Conductors Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 410-416.	0.0	6
186	Measurement and Analysis of Fast Neutron Spectra in Iron, Nickel and Chromium. Journal of Nuclear Science and Technology, 1987, 24, 702-718.	0.7	2
187	Experimental Studies on MHD-Stability of an Axisymmetric Mirror with a Single Internal Hoop. Journal of the Physical Society of Japan, 1987, 56, 1385-1393.	0.7	3
188	Measurement and analysis of fast neutron spectra in iron, nickel and chromium Journal of Nuclear Science and Technology, 1987, 24, 702-718.	0.7	1
189	Assessment of nuclear data for copper and silicon by neutron spectra in these piles. Radiation Effects, 1986, 92, 199-202.	0.4	O
190	Measurement and Analysis of Neutron Spectra in Lithium Fluoride and Polytetrafluoroethylene Piles. Journal of Nuclear Science and Technology, 1985, 22, 708-722.	0.7	2
191	Measurement and analysis of neutron spectra in lithium fluoride and polytetrafluoroethylene piles Journal of Nuclear Science and Technology, 1985, 22, 708-722.	0.7	3
192	Effect of Changes in Plasma Profiles on Current Drive by Lower Hybrid Wave in Tokamak. Journal of the Physical Society of Japan, 1984, 53, 472-475.	0.7	0
193	Numerical simulation for density increase by hydrogen pellet injection KakuyūgŕKenkyū, 1984, 52, 173-198.	0.1	2
194	The Behavior of Neutral Particles in NOVA-II Plasma. Journal of the Physical Society of Japan, 1984, 53, 3010-3017.	0.7	0
195	Assessment of Neutron Cross Sections for Titanium with Neutron Spectrum in Titanium Pile. Journal of Nuclear Science and Technology, 1983, 20, 991-1005.	0.7	O
196	Determination of Zeff and Ion Density of NOVA II Tokamak Plasma by Neutral Beam Probe. Journal of the Physical Society of Japan, 1983, 52, 3693-3696.	0.7	0
197	Relaxation of Runaway Electron Energies Due to Excitation of High Frequency Waves. Journal of the Physical Society of Japan, 1983, 52, 2371-2378.	0.7	4
198	Assessment of neutron cross sections for titanium with neutron spectrum in titanium pile Journal of Nuclear Science and Technology, 1983, 20, 991-1005.	0.7	3

#	Article	IF	CITATIONS
199	The Behavior of Neutral Particles in NOVA-II Plasma. KakuyūgŕKenkyū, 1983, 50, 563-577.	0.1	O
200	Measurement and Analysis of Neutron Spectrum in a Molybdenum Pile. Journal of Nuclear Science and Technology, 1982, 19, 427-437.	0.7	5
201	Measurement and analysis of neutron spectrum in a molybdenum pile Journal of Nuclear Science and Technology, 1982, 19, 427-437.	0.7	6
202	A Proposal for Neutral Beam Probing of Plasma Current Profile. Journal of the Physical Society of Japan, 1981, 50, 2426-2432.	0.7	1
203	Metal atom synthesis ofsyn(1-3-?-but-2-enyl)(?-buta-1,3-diene)(triethylphosphine)cobalt. Transition Metal Chemistry, 1980, 5, 98-101.	0.7	3
204	Non-Thermal Radiation at Runaway Electron Instability. Journal of the Physical Society of Japan, 1979, 47, 1035-1036.	0.7	2
205	Numerical Solution of Time-Dependent Two-DimensionalP1Equation of Neutron Transport. Journal of Nuclear Science and Technology, 1978, 15, 645-657.	0.7	0
206	Neutron Spectrum in Small Iron Pile Surrounded by Lead Reflector. Journal of Nuclear Science and Technology, 1978, 15, 183-191.	0.7	5
207	Neutron Spectrum in Small Iron Pile Surrounded by Lead Reflector. Journal of Nuclear Science and Technology, 1978, 15, 183-191.	0.7	6
208	Measurement and Analysis of Neutron Spectrum in Spherical Pile of Thoria. Journal of Nuclear Science and Technology, 1977, 14, 426-437.	0.7	8
209	Matter System Irradiated by Coherent Light. Journal of the Physical Society of Japan, 1977, 42, 1253-1261.	0.7	2
210	Measurement and Analysis of Neutron Spectrum in Spherical Pile of Thoria. Journal of Nuclear Science and Technology, 1977, 14, 426-437.	0.7	5
211	Numerical Solutions of Diffusion Equations in Multi-Dimensional Slab Geometry by Fourier Expansions. Journal of Nuclear Science and Technology, 1975, 12, 325-335.	0.7	2
212	Reduced Two-Dimensional Critical Problem of Finite Cylindrical Reactor. Journal of Nuclear Science and Technology, 1975, 12, 531-542.	0.7	3
213	Numerical Solution to Critical Problem of Finite Cylindrical Reactors by Variational Method. Journal of Nuclear Science and Technology, 1974, 11, 359-368.	0.7	7
214	Solution of Standard Diamond Difference Equations for Discrete-Ordinate Neutron Transport Equations Equivalent to the PL Approximation in x-y Geometry. Nuclear Science and Engineering, 1974, 53, 355-369.	0.5	5
215	Numerical Solutions of Discrete-Ordinate Neutron Transport Equations Equivalent toPLApproximation inX-YGeometry. Journal of Nuclear Science and Technology, 1974, 11, 231-241.	0.7	2
216	Numerical Solutions of Discrete-Ordinate Neutron Transport Equations Equivalent to PL Approximation in X-Y Geometry. Journal of Nuclear Science and Technology, 1974, 11, 231-241.	0.7	1

#	Article	IF	Citations
217	Simulation of Fast-Reactor Spectra. Journal of Nuclear Science and Technology, 1973, 10, 402-410.	0.7	0
218	Validity of Constant Collision Density Assumption in Intermediate Energy Region. Journal of Nuclear Science and Technology, 1971, 8, 465-468.	0.7	0
219	Resonance Overlap Effect on Effective Cross Section in Unresolved Resonance Region. Journal of Nuclear Science and Technology, 1970, 7, 239-247.	0.7	0
220	Solution of Group-Diffusion Equation Using Green's Function. Nuclear Science and Engineering, 1967, 28, 93-104.	0.5	23
221	Solution of One-Dimensional Group-Diffusion Equation by Laplace Transformation. Journal of Nuclear Science and Technology, 1967, 4, 468-476.	0.7	5
222	An Analysis of Signal Pulse from Semiconductor Junction Detectors. Journal of Nuclear Science and Technology, 1967, 4, 195-204.	0.7	1
223	An Analysis of Signal Pulse from Semiconductor Junction Detectors. Journal of Nuclear Science and Technology, 1967, 4, 195-204.	0.7	1
224	Solution of One-Dimensional Group-Diffusion Equation by Laplace Transformation. Journal of Nuclear Science and Technology, 1967, 4, 468-476.	0.7	1
225	Measurement and Calculation of Neutron Diffusion Parameters in Water. Journal of Nuclear Science and Technology, 1966, 3, 275-288.	0.7	7
226	A Regional Neutron-Balance Method for Multi-Group Calculation of Multi-Region Fast Reactors. Journal of Nuclear Science and Technology, 1966, 3, 409-417.	0.7	1
227	Measurement and Calculation of Neutron Diffusion Parameters in Water. Journal of Nuclear Science and Technology, 1966, 3, 275-288.	0.7	2
228	On the Burn-Up Characteristics of Large Pu-U Fast Reactors. Journal of Nuclear Science and Technology, 1965, 2, 525-531.	0.7	4
229	On the Burn-Up Characteristics of Large Pu-U Fast Reactors. Journal of Nuclear Science and Technology, 1965, 2, 525-531.	0.7	1
230	Chemically laminated 2D bis(terpyridine)metal polymer films: Formation mechanism at the liquidâ€liquid interface and redox rectification. Chemistry - A European Journal, 0, , .	1.7	2
231	Superior Multielectronâ€Transferring Energy Storage by Ï€â€d Conjugated Frameworks. Small, 0, , 2202861.	5.2	1