Samantha Husmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/553863/samantha-husmann-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18
papers318
citations12
h-index17
g-index22
ext. papers397
ext. citations5.5
avg, IF4.09
L-index

#	Paper	IF	Citations
18	Transparent aqueous rechargeable sodium-ion battery. Electrochimica Acta, 2022, 140548	6.7	
17	Structural and chemical characterization of MoO2/MoS2 triple-hybrid materials using electron microscopy in up to three dimensions. <i>Nanoscale Advances</i> , 2021 , 3, 1067-1076	5.1	2
16	Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles <i>ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Particles ACS Applied Materials & District States and Tailored Polymer Polymer Polymer Particles ACS Applied Materials & District States and Tailored Polymer Polymer</i>	9.5	3
15	Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: A multifunctional material for transparent aqueous K-ion battery or electrochromic device. <i>Electrochimica Acta</i> , 2020 , 345, 136199	6.7	12
14	Electrospun vanadium sulfide / carbon hybrid fibers obtained via one-step thermal sulfidation for use as lithium-ion battery electrodes. <i>Journal of Power Sources</i> , 2020 , 450, 227674	8.9	15
13	Ionic liquid-based synthesis of MXene. <i>Chemical Communications</i> , 2020 , 56, 11082-11085	5.8	33
12	High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. <i>Electrochimica Acta</i> , 2020 , 349, 136243	6.7	14
11	Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater <i>RSC Advances</i> , 2019 , 9, 14849-14858	3.7	36
10	A multi-technique approach towards the mechanistic investigation of the electrodeposition of Prussian blue over carbon nanotubes film. <i>Electrochimica Acta</i> , 2019 , 312, 380-391	6.7	13
9	Effect of Pore Size on the Ion Electrosorption and Hydrogen/Deuterium Electrosorption Using Sodium Chloride in H2O and D2O. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A4158-A4167	3.9	6
8	Photoanode for Aqueous Dye-Sensitized Solar Cells based on a Novel Multicomponent Thin Film. <i>ChemSusChem</i> , 2018 , 11, 1238-1245	8.3	14
7	Carbon nanotube thin films modified with a mixture of Prussian blue and ruthenium purple: combining materials and properties. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 2003-2012	2.6	5
6	Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: Improving cathode performance in aqueous metal-ions batteries. <i>Electrochimica Acta</i> , 2018 , 283, 1339-	·1 <i>§5</i> 70	17
5	Design of a Prussian Blue Analogue/Carbon Nanotube Thin-Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application. <i>Chemistry - A European Journal</i> , 2016 , 22, 6643-53	4.8	21
4	Flexible, Transparent and Thin Films of Carbon Nanomaterials as Electrodes for Electrochemical Applications. <i>Electrochimica Acta</i> , 2016 , 197, 200-209	6.7	61
3	Multifunctional carbon nanotubes/ruthenium purple thin films: preparation, characterization and study of application as sensors and electrochromic materials. <i>Dalton Transactions</i> , 2015 , 44, 5985-95	4.3	17
2	Carbon nanotube/Prussian blue paste electrodes: Characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. <i>Sensors and Actuators B: Chemical.</i> 2014 . 192. 782-790	8.5	46

Layered Nano-Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. *Advanced Materials Interfaces*,2102185

4.6

1