
Zheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553803/publications.pdf Version: 2024-02-01

ZHENC MANC

#	Article	IF	CITATIONS
1	Lime: Low-Cost and Incremental Learning for Dynamic Heterogeneous Information Networks. IEEE Transactions on Computers, 2022, 71, 628-642.	3.4	42
2	Online Power Management for Multi-Cores: A Reinforcement Learning Based Approach. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 751-764.	5.6	6
3	Optimizing Depthwise Separable Convolution Operations on GPUs. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 70-87.	5.6	25
4	Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 520-533.	5.8	15
5	Optimizing Sparse Matrix Multiplications for Graph Neural Networks. Lecture Notes in Computer Science, 2022, , 101-117.	1.3	6
6	Fact-Driven Abstractive Summarization by Utilizing Multi-Granular Multi-Relational Knowledge. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 1665-1678.	5.8	3
7	Automating reinforcement learning architecture design for code optimization. , 2022, , .		5
8	Parallelizing and Balancing Coupled DSMC/PIC for Large-scale Particle Simulations. , 2022, , .		4
9	More bang for your buck: Boosting performance with capped power consumption. Tsinghua Science and Technology, 2021, 26, 370-383.	6.1	10
10	Automatic translation of data parallel programs for heterogeneous parallelism through OpenMP offloading. Journal of Supercomputing, 2021, 77, 4957-4987.	3.6	4
11	Combining Graph-Based Learning With Automated Data Collection for Code Vulnerability Detection. IEEE Transactions on Information Forensics and Security, 2021, 16, 1943-1958.	6.9	110
12	elCIC Configuration of Downlink and Uplink Decoupling With SWIPT in 5G Dense IoT HetNets. IEEE Transactions on Wireless Communications, 2021, 20, 8274-8287.	9.2	6
13	CrossGR. , 2021, 5, 1-23.		11
14	Towards practical 3D ultrasound sensing on commercial-off-the-shelf mobile devices. Computer Networks, 2021, 191, 107990.	5.1	1
15	Automated conformance testing for JavaScript engines via deep compiler fuzzing. , 2021, , .		31
16	HyFM: function merging for free. , 2021, , .		10
17	RISE., 2021,,.		8

2

#	Article	IF	CITATIONS
19	Dynamic GPU Energy Optimization for Machine Learning Training Workloads. IEEE Transactions on Parallel and Distributed Systems, 2021, , 1-1.	5.6	6
20	Adaptive Computation Offloading for Mobile Augmented Reality. , 2021, 5, 1-30.		3
21	Characterizing Scalability of Sparse Matrix–Vector Multiplications on Phytium FT-2000+. International Journal of Parallel Programming, 2020, 48, 80-97.	1.5	10
22	Semantics-aware obfuscation scheme prediction for binary. Computers and Security, 2020, 99, 102072.	6.0	6
23	Camel: Smart, Adaptive Energy Optimization for Mobile Web Interactions. , 2020, , .		11
24	Parallel programming models for heterogeneous many-cores: a comprehensive survey. CCF Transactions on High Performance Computing, 2020, 2, 382-400.	1.7	25
25	Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 1878-1896.	5.6	11
26	Compile-time code virtualization for android applications. Computers and Security, 2020, 94, 101821.	6.0	4
27	FlowGAN: A Conditional Generative Adversarial Network for Flow Prediction in Various Conditions. , 2020, , .		14
28	Optimizing Deep Learning Inference on Embedded Systems Through Adaptive Model Selection. Transactions on Embedded Computing Systems, 2020, 19, 1-28.	2.9	33
29	Vectorization-aware loop unrolling with seed forwarding. , 2020, , .		9
30	Using Generative Adversarial Networks to Break and Protect Text Captchas. ACM Transactions on Privacy and Security, 2020, 23, 1-29.	3.0	12
31	Effective function merging in the SSA form. , 2020, , .		17
32	Deep Program Structure Modeling Through Multi-Relational Graph-based Learning. , 2020, , .		15
33	Network-on-Chip Aware Task Mappings. Communications in Computer and Information Science, 2020, , 135-149.	0.5	0
34	Power modeling for Phytium FT-2000+/64 multi-core architecture. , 2020, , .		1
35	Optimizing GPU Memory Transactions for Convolution Operations. , 2020, , .		2
36	Sensing Our World Using Wireless Signals. IEEE Internet Computing, 2019, 23, 38-45.	3.3	19

#	Article	IF	CITATIONS
37	Auto-Tuning MPI Collective Operations on Large-Scale Parallel Systems. , 2019, , .		7
38	Function Merging by Sequence Alignment. , 2019, , .		19
39	Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems. IEEE Access, 2019, 7, 139394-139408.	4.2	4
40	Exploiting Binary-Level Code Virtualization to Protect Android Applications Against App Repackaging. IEEE Access, 2019, 7, 115062-115074.	4.2	6
41	Invalidating Analysis Knowledge for Code Virtualization Protection Through Partition Diversity. IEEE Access, 2019, 7, 169160-169173.	4.2	4
42	Leveraging WebAssembly for Numerical JavaScript Code Virtualization. IEEE Access, 2019, 7, 182711-182724.	4.2	1
43	Lattice CNNs for Matching Based Chinese Question Answering. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 6634-6641.	4.9	31
44	Optimizing Sparse Matrix–Vector Multiplications on an ARMv8-based Many-Core Architecture. International Journal of Parallel Programming, 2019, 47, 418-432.	1.5	19
45	Find me a safe zone: A countermeasure for channel state information based attacks. Computers and Security, 2019, 80, 273-290.	6.0	5
46	WideSee. , 2019, , .		53
47	Jointly Learning Entity and Relation Representations for Entity Alignment. , 2019, , .		89
48	Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs. , 2019, , .		146
49	Towards wide-area contactless human sensing. , 2019, , .		5
50	Enhance virtual-machine-based code obfuscation security through dynamic bytecode scheduling. Computers and Security, 2018, 74, 202-220.	6.0	18
51	To Compress, or Not to Compress: Characterizing Deep Learning Model Compression for Embedded Inference. , 2018, , .		14
52	Exploiting Code Diversity to Enhance Code Virtualization Protection. , 2018, , .		6
53	Adaptive Optimization of Sparse Matrix-Vector Multiplication on Emerging Many-Core Architectures. , 2018, , .		18

54 Proteus. , 2018, , .

#	Article	IF	CITATIONS
55	CrossSense. , 2018, , .		146
56	Towards Large-Scale RFID Positioning: A Low-cost, High-precision Solution Based on Compressive Sensing. , 2018, , .		2
57	Yet Another Text Captcha Solver. , 2018, , .		80
58	SleepGuard. , 2018, 2, 1-34.		40
59	Adaptive Web Browsing on Mobile Heterogeneous Multi-cores. IEEE Computer Architecture Letters, 2018, , 1-1.	1.5	4
60	MOCL. , 2018, , .		11
61	Auto-tuning Streamed Applications on Intel Xeon Phi. , 2018, , .		23
62	A Video-based Attack for Android Pattern Lock. ACM Transactions on Privacy and Security, 2018, 21, 1-31.	3.0	26
63	Adaptive deep learning model selection on embedded systems. , 2018, , .		43
64	Defeat Your Enemy Hiding behind Public WiFi: WiGuard Can Protect Your Sensitive Information from CSI-Based Attack. Applied Sciences (Switzerland), 2018, 8, 515.	2.5	2
65	VMGuards: A Novel Virtual Machine Based Code Protection System with VM Security as the First Class Design Concern. Applied Sciences (Switzerland), 2018, 8, 771.	2.5	2
66	Enhancing Received Signal Strength-Based Localization through Coverage Hole Detection and Recovery. Sensors, 2018, 18, 2075.	3.8	9
67	Machine Learning in Compiler Optimization. Proceedings of the IEEE, 2018, 106, 1879-1901.	21.3	112
68	Adaptive deep learning model selection on embedded systems. ACM SIGPLAN Notices, 2018, 53, 31-43.	0.2	58
69	Marrying Up Regular Expressions with Neural Networks: A Case Study for Spoken Language Understanding. , 2018, , .		25
70	Evaluating Brush Movements for Chinese Calligraphy: A Computer Vision Based Approach. , 2018, , .		10
71	Synthesizing benchmarks for predictive modeling. , 2017, , .		49
72	Minimizing the cost of iterative compilation with active learning. , 2017, , .		31

#	Article	IF	CITATIONS
73	ALEA. Transactions on Architecture and Code Optimization, 2017, 14, 1-25.	2.0	11
74	DexPro: A Bytecode Level Code Protection System for Android Applications. Lecture Notes in Computer Science, 2017, , 367-382.	1.3	5
75	SEEAD: A Semantic-Based Approach for Automatic Binary Code De-obfuscation. , 2017, , .		4
76	Real-Time Power Cycling in Video on Demand Data Centres Using Online Bayesian Prediction. , 2017, , .		1
77	Optimise web browsing on heterogeneous mobile platforms: A machine learning based approach. , 2017, , .		35
78	Adaptive optimization for OpenCL programs on embedded heterogeneous systems. ACM SIGPLAN Notices, 2017, 52, 11-20.	0.2	18
79	End-to-End Deep Learning of Optimization Heuristics. , 2017, , .		90
80	Protect Sensitive Information against Channel State Information Based Attacks. , 2017, , .		6
81	Adaptive optimization for OpenCL programs on embedded heterogeneous systems. , 2017, , .		28
82	Exploit dynamic data flows to protect software against semantic attacks. , 2017, , .		5
83	Exploiting Wireless Received Signal Strength Indicators to Detect Evil-Twin Attacks in Smart Homes. Mobile Information Systems, 2017, 2017, 1-14.	0.6	20
84	Improving spark application throughput via memory aware task co-location. , 2017, , .		38
85	AppIS: Protect Android Apps Against Runtime Repackaging Attacks. , 2017, , .		11
86	Cracking Android Pattern Lock in Five Attempts. , 2017, , .		69
87	Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix. , 2017, , .		47
88	Exploiting Dynamic Scheduling for VM-Based Code Obfuscation. , 2016, , .		6
89	A Convolution BiLSTM Neural Network Model for Chinese Event Extraction. Lecture Notes in Computer Science, 2016, , 275-287.	1.3	74
90	Improving First Order Temporal Fact Extraction with Unreliable Data. Lecture Notes in Computer Science, 2016, , 251-262.	1.3	0

#	Article	IF	CITATIONS
91	Power Capping: What Works, What Does Not. , 2015, , .		15
92	Automatic and Portable Mapping of Data Parallel Programs to OpenCL for GPU-Based Heterogeneous Systems. Transactions on Architecture and Code Optimization, 2015, 11, 1-26.	2.0	30
93	Fast Automatic Heuristic Construction Using Active Learning. Lecture Notes in Computer Science, 2015, , 146-160.	1.3	16
94	Active learning accelerated automatic heuristic construction for parallel program mapping. , 2014, , .		3
95	Smart multi-task scheduling for OpenCL programs on CPU/GPU heterogeneous platforms. , 2014, , .		89
96	OpenCL Task Partitioning in the Presence of GPU Contention. Lecture Notes in Computer Science, 2014, , 87-101.	1.3	25
97	Integrating profile-driven parallelism detection and machine-learning-based mapping. Transactions on Architecture and Code Optimization, 2014, 11, 1-26.	2.0	47
98	Exploitation of GPUs for the Parallelisation of Probably Parallel Legacy Code. Lecture Notes in Computer Science, 2014, , 154-173.	1.3	12
99	Portable mapping of data parallel programs to OpenCL for heterogeneous systems. , 2013, , .		86
100	Smart, adaptive mapping of parallelism in the presence of external workload. , 2013, , .		36
101	Using machine learning to partition streaming programs. Transactions on Architecture and Code Optimization, 2013, 10, 1-25.	2.0	27
102	A workload-aware mapping approach for data-parallel programs. , 2011, , .		36
103	Partitioning streaming parallelism for multi-cores. , 2010, , .		77
104	Mapping parallelism to multi-cores. , 2009, , .		84
105	Mapping parallelism to multi-cores. ACM SIGPLAN Notices, 2009, 44, 75-84.	0.2	61
106	Towards a holistic approach to auto-parallelization. , 2009, , .		121
107	Towards a holistic approach to auto-parallelization. ACM SIGPLAN Notices, 2009, 44, 177-187.	0.2	52