W Todd Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5537822/publications.pdf

Version: 2024-02-01

87723 53109 7,827 92 38 85 citations h-index g-index papers 96 96 96 8271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of MαCD-mediated phospholipid exchange on plasma membrane ordered lipid domain stability. Biophysical Journal, 2022, 121, 172a-173a.	0.2	О
2	Modulation of Src Kinase Activity by Selective Substrate Recognition with Pseudopeptidic Cages. Chemistry - A European Journal, 2021, 27, 9542-9549.	1.7	5
3	Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. Journal of Biological Chemistry, 2021, 297, 101010.	1.6	12
4	Substrate binding to Src: A new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics. Protein Science, 2020, 29, 350-359.	3.1	9
5	Temperature sensitivities of metazoan and pre-metazoan Src kinases. Biochemistry and Biophysics Reports, 2020, 23, 100775.	0.7	1
6	Structure, Function, and Regulation of the SRMS Tyrosine Kinase. International Journal of Molecular Sciences, 2020, 21, 4233.	1.8	10
7	Src and podoplanin forge a path to destruction. Drug Discovery Today, 2019, 24, 241-249.	3.2	30
8	Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 819-826.	1.4	26
9	What Makes a Kinase Promiscuous for Inhibitors?. Cell Chemical Biology, 2019, 26, 390-399.e5.	2.5	59
10	Src signaling in a low-complexity unicellular kinome. Scientific Reports, 2018, 8, 5362.	1.6	6
11	ldentification of a Water-Coordinating HER2 Inhibitor by Virtual Screening Using Similarity-Based Scoring. Biochemistry, 2018, 57, 4934-4951.	1.2	6
12	Expression and purification of functional insulin and insulin-like growth factor 1 holoreceptors from mammalian cells. Analytical Biochemistry, 2017, 536, 69-77.	1.1	10
13	Structural and Biochemical Basis for Intracellular Kinase Inhibition by Src-specific Peptidic Macrocycles. Cell Chemical Biology, 2016, 23, 1103-1112.	2.5	12
14	Auto-thiophosphorylation activity of Src tyrosine kinase. BMC Biochemistry, 2016, 17, 13.	4.4	5
15	Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase. PLoS ONE, 2015, 10, e0131062.	1.1	8
16	PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility. Experimental Cell Research, 2015, 335, 115-122.	1.2	21
17	Cancer-Associated Mutations in Breast Tumor Kinase/PTK6 Differentially Affect Enzyme Activity and Substrate Recognition. Biochemistry, 2015, 54, 3173-3182.	1.2	14
18	Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase*. Journal of Biological Chemistry, 2015, 290, 15934-15947.	1.6	37

#	Article	IF	Citations
19	Molecular characterization of WDCP, a novel fusion partner for the anaplastic lymphoma tyrosine kinase ALK. Biomedical Reports, 2015, 3, 9-13.	0.9	7
20	The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nature Communications, 2015, 6, 6406.	5.8	60
21	Regulation of Src and Csk Nonreceptor Tyrosine Kinases in the Filasterean <i>Ministeria vibrans</i> Biochemistry, 2014, 53, 1320-1329.	1.2	8
22	Closing in on a mechanism for activation. ELife, 2014, 3, .	2.8	4
23	Metazoan-like signaling in a unicellular receptor tyrosine kinase. BMC Biochemistry, 2013, 14, 4.	4.4	6
24	Serines in the Intracellular Tail of Podoplanin (PDPN) Regulate Cell Motility. Journal of Biological Chemistry, 2013, 288, 12215-12221.	1.6	63
25	Src Points the Way to Biomarkers and Chemotherapeutic Targets. Genes and Cancer, 2012, 3, 426-435.	0.6	18
26	Effects of Somatic Mutations in the C-Terminus of Insulin-Like Growth Factor 1 Receptor on Activity and Signaling. Journal of Signal Transduction, 2012, 2012, 1-7.	2.0	6
27	Lack of Csk-Mediated Negative Regulation in a Unicellular Src Kinase. Biochemistry, 2012, 51, 8267-8277.	1.2	19
28	Tyrosine kinase signaling and the emergence of multicellularity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1053-1057.	1.9	52
29	PTB Domain-Directed Substrate Targeting in a Tyrosine Kinase from the Unicellular Choanoflagellate Monosiga brevicollis. PLoS ONE, 2011, 6, e19296.	1.1	9
30	Cancer-associated Mutations Activate the Nonreceptor Tyrosine Kinase Ack1. Journal of Biological Chemistry, 2010, 285, 10605-10615.	1.6	48
31	Reengineering the Signaling Properties of a Src Family Kinase. Biochemistry, 2009, 48, 10956-10962.	1.2	9
32	Synthesis of Functional Signaling Domains by Combinatorial Polymerization of Phosphorylation Motifs. ACS Chemical Biology, 2009, 4, 751-758.	1.6	3
33	Evidence for Convergent Evolution in the Signaling Properties of a Choanoflagellate Tyrosine Kinase. Biochemistry, 2009, 48, 5180-5186.	1.2	12
34	Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor. EMBO Journal, 2008, 27, 1985-1994.	3.5	75
35	The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 2008, 451, 783-788.	13.7	1,006
36	An electrostatic network and longâ€range regulation of Src kinases. Protein Science, 2008, 17, 1871-1880.	3.1	54

#	Article	IF	CITATIONS
37	The Evolutionarily Conserved Arrangement of Domains in Src Family Kinases Is Important for Substrate Recognition. Biochemistry, 2008, 47, 10871-10880.	1.2	12
38	Signaling Properties of a Non-metazoan Src Kinase and the Evolutionary History of Src Negative Regulation. Journal of Biological Chemistry, 2008, 283, 15491-15501.	1.6	77
39	A crystallographic snapshot of tyrosine <i>trans</i> -phosphorylation in action. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19660-19665.	3.3	61
40	Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12463-12468.	3.3	104
41	The protist, <i>Monosiga brevicollis</i> , has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9674-9679.	3. 3	191
42	Cooperative activation of Src family kinases by SH3 and SH2 ligands. Cancer Letters, 2007, 257, 116-123.	3.2	30
43	A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases. Molecular Cell, 2007, 27, 717-730.	4. 5	221
44	Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region. FEBS Letters, 2007, 581, 3235-3240.	1.3	13
45	Receptor tyrosine kinases: mechanisms of activation and signaling. Current Opinion in Cell Biology, 2007, 19, 117-123.	2.6	388
46	Processive phosphorylation: Mechanism and biological importance. Cellular Signalling, 2007, 19, 2218-2226.	1.7	83
47	Purification and Enzyme Activity of ACK1. Methods in Enzymology, 2006, 406, 250-260.	0.4	11
48	Individual Cas Phosphorylation Sites Are Dispensable for Processive Phosphorylation by Src and Anchorage-independent Cell Growth. Journal of Biological Chemistry, 2006, 281, 20689-20697.	1.6	37
49	Regulation of Sprouty Stability by Mnk1-Dependent Phosphorylation. Molecular and Cellular Biology, 2006, 26, 1898-1907.	1.1	75
50	Role of the Activation Loop Tyrosines in Regulation of the Insulin-like Growth Factor I Receptor-tyrosine Kinase. Journal of Biological Chemistry, 2006, 281, 23785-23791.	1.6	31
51	Interaction between Brk kinase and insulin receptor substrate-4. Oncogene, 2005, 24, 5656-5664.	2.6	63
52	Phosphorylation of WASP by the Cdc42-associated Kinase ACK1. Journal of Biological Chemistry, 2005, 280, 42219-42226.	1.6	45
53	The C Terminus of RON Tyrosine Kinase Plays an Autoinhibitory Role. Journal of Biological Chemistry, 2005, 280, 8893-8900.	1.6	22
54	Substrate Recognition by the Human Fatty-acid Synthase. Journal of Biological Chemistry, 2005, 280, 42612-42618.	1.6	13

#	Article	IF	CITATIONS
55	Normal Cells Control the Growth of Neighboring Transformed Cells Independent of Gap Junctional Communication and Src Activity. Cancer Research, 2004, 64, 1347-1358.	0.4	67
56	Role of the Brk SH3 domain in substrate recognition. Oncogene, 2004, 23, 2216-2223.	2.6	47
57	Inhibition of insulin-like growth factor I receptor autophosphorylation by novel 6-5 ring-fused compounds. Biochemical Pharmacology, 2004, 68, 145-145.	2.0	0
58	Determinants of Substrate Recognition in Nonreceptor Tyrosine Kinases. Accounts of Chemical Research, 2003, 36, 393-400.	7.6	76
59	Determinants for the interaction between Janus kinase 2 and protein phosphatase 2A. Archives of Biochemistry and Biophysics, 2003, 417, 87-95.	1.4	19
60	Src Phosphorylates Cas on Tyrosine 253 to Promote Migration of Transformed Cells. Journal of Biological Chemistry, 2003, 278, 46533-46540.	1.6	81
61	Biochemical Properties of the Cdc42-associated Tyrosine Kinase ACK1. Journal of Biological Chemistry, 2003, 278, 47713-47723.	1.6	72
62	Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors. Cancer Research, 2003, 63, 6395-404.	0.4	54
63	Regulation of the Nonreceptor Tyrosine Kinase Brk by Autophosphorylation and by Autoinhibition. Journal of Biological Chemistry, 2002, 277, 34634-34641.	1.6	76
64	Identification of Novel SH3 Domain Ligands for the Src Family Kinase Hck. Journal of Biological Chemistry, 2002, 277, 28238-28246.	1.6	77
65	Coupling kinase activation to substrate recognition in SRC-family tyrosine kinases. Frontiers in Bioscience - Landmark, 2002, 7, d256-267.	3.0	17
66	Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Research, 2002, 62, 4236-43.	0.4	684
67	Protein phosphatase 2A interacts with the Src kinase substrate p130CAS. Oncogene, 2001, 20, 6057-6065.	2.6	20
68	Caged Thiophosphotyrosine Peptides. Angewandte Chemie - International Edition, 2001, 40, 3049-3051.	7.2	42
69	Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Structural Biology, 2001, 8, 1058-1063.	9.7	308
70	Processive Phosphorylation of p130Cas by Src Depends on SH3-Polyproline Interactions. Journal of Biological Chemistry, 2001, 276, 28190-28196.	1.6	112
71	Involvement of Protein Phosphatase 2A in the Interleukin-3-Stimulated Jak2-Stat5 Signaling Pathway. Journal of Interferon and Cytokine Research, 2001, 21, 369-378.	0.5	41
72	Improving SH3 domain ligand selectivity using a non-natural scaffold. Chemistry and Biology, 2000, 7, 463-473.	6.2	109

#	Article	IF	Citations
73	Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase. Science, 2000, 289, 1938-1942.	6.0	1,712
74	A Peptide Model System for Processive Phosphorylation by Src Family Kinases. Biochemistry, 2000, 39, 14531-14537.	1.2	49
75	Engineering the Substrate Specificity of the Abl Tyrosine Kinase. Journal of Biological Chemistry, 1999, 274, 4995-5003.	1.6	29
76	Tyrosine Phosphoprotein Phosphatases. Barry J. Goldstein. Quarterly Review of Biology, 1999, 74, 464-465.	0.0	0
77	[7] Caged peptides and proteins by targeted chemical modification. Methods in Enzymology, 1998, 291, 117-135.	0.4	24
78	Intramolecular Regulatory Interactions in the Src Family Kinase Hck Probed by Mutagenesis of a Conserved Tryptophan Residue. Journal of Biological Chemistry, 1998, 273, 32129-32134.	1.6	92
79	Enhanced Phosphorylation of Src Family Kinase Substrates Containing SH2 Domain Binding Sites. Journal of Biological Chemistry, 1998, 273, 15325-15328.	1.6	66
80	Phytochemistry of Medicinal Plants. John T. Arnason , Rachel Mata , John T. Romeo. Quarterly Review of Biology, 1997, 72, 334-334.	0.0	0
81	Activation of the Sire-family tyrosine kinase Hck by SH3 domain displacement. Nature, 1997, 385, 650-653.	13.7	595
82	Involvement of the $\hat{l}\pm$ Subunit of Farnesyl-Protein Transferase in Substrate Recognition. Biochemistry, 1996, 35, 13494-13500.	1.2	23
83	Protein folding: from basic science to biotechnology. Genetic Analysis, Techniques and Applications, 1996, 12, 169-172.	1.5	0
84	Determinants of Substrate Recognition in the Protein-tyrosine Phosphatase, PTP1. Journal of Biological Chemistry, 1996, 271, 5386-5392.	1.6	26
85	Peptides: Synthesis, Structures, and Applications.Bernd Gutte. Quarterly Review of Biology, 1996, 71, 563-563.	0.0	1
86	Substrate Specificities of the Insulin and Insulin-like Growth Factor 1 Receptor Tyrosine Kinase Catalytic Domains. Journal of Biological Chemistry, 1995, 270, 29825-29830.	1.6	46
87	The Translational Apparatus: Structure, Function, Regulation, Evolution.Knud H. Nierhaus , Francois Franceshi , Alap R. Subramanian , Volker A. Erdmann , Brigitte Wittmann-Liebold. Quarterly Review of Biology, 1995, 70, 215-215.	0.0	0
88	Precision Substrate Targeting of Protein Kinases v-Abl and c-Src. Journal of Biological Chemistry, 1995, 270, 27022-27026.	1.6	9
89	Co- and Post-Translational Modification of Proteins: Chemical Principles and Biological Effects.Donald J. Graves , Bruce L. Martin , Jerry H. Wang. Quarterly Review of Biology, 1995, 70, 336-337.	0.0	0
90	A metal-binding motif implicated in RNA recognition by an aminoacyl-tRNA synthetase and by a retroviral gene product. Molecular Microbiology, 1992, 6, 1259-1262.	1.2	8

#	Article	IF	CITATIONS
91	[42] Peptide-based affinity labeling of adenosine cyclic monophosphate-dependent protein kinase. Methods in Enzymology, 1991, 200, 500-508.	0.4	10
92	Role of enzyme-peptide substrate backbone hydrogen bonding in determining protein kinase substrate specificities. Biochemistry, 1987, 26, 4461-4466.	1.2	21