Christopher Grainge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5537816/publications.pdf

Version: 2024-02-01

56 papers

2,658 citations

257101 24 h-index 50 g-index

58 all docs

58 docs citations

58 times ranked 3754 citing authors

#	Article	IF	CITATIONS
1	Biomarker signatures for progressive idiopathic pulmonary fibrosis. European Respiratory Journal, 2022, 59, 2101181.	3.1	30
2	TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. International Journal of Pharmaceutics, 2022, 617, 121586.	2.6	1
3	Deep Learning–based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 883-891.	2.5	29
4	Severe asthma assessment, management and the organisation of care in Australia and New Zealand: expert forum roundtable meetings. Internal Medicine Journal, 2021, 51, 169-180.	0.5	5
5	Diagnosis and management of connective tissue diseaseâ€associated interstitial lung disease in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand*. Respirology, 2021, 26, 23-51.	1.3	45
6	Cryobiopsy for Identification of Usual Interstitial Pneumonia and Other Interstitial Lung Disease Features. Further Lessons from COLDICE, a Prospective Multicenter Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1306-1313.	2.5	32
7	Mepolizumab and Oral Corticosteroid Stewardship: Data from the Australian Mepolizumab Registry. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2715-2724.e5.	2.0	15
8	Benefits of a virtual interstitial lung disease <scp>multidisciplinary </scp> meeting in the face of <scp>COVID </scp> â€19. Respirology, 2021, 26, 612-615.	1.3	12
9	Dysregulated actin cytoskeleton associated with barrier dysfunction in asthma. FASEB Journal, 2021, 35, .	0.2	O
10	Parapneumonic Effusions Are Characterized by Elevated Levels of Neutrophil Extracellular Traps. Chest, 2021, 160, 1645-1655.	0.4	6
11	A cGAS-dependent response links DNA damage and senescence in alveolar epithelial cells: a potential drug target in IPF. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L859-L871.	1.3	17
12	A Senescence Bystander Effect in Human Lung Fibroblasts. Biomedicines, 2021, 9, 1162.	1.4	12
13	In Reply. Archives of Pathology and Laboratory Medicine, 2021, 145, 1326-1327.	1.2	1
14	TELO-SCOPE study: a randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis. BMJ Open Respiratory Research, 2021, 8, e001127.	1.2	13
15	Diagnostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease diagnosis (COLDICE): a prospective, comparative study. Lancet Respiratory Medicine, the, 2020, 8, 171-181.	5.2	253
16	Australasian interstitial lung disease registry (AILDR): objectives, design and rationale of a bi-national prospective database. BMC Pulmonary Medicine, 2020, 20, 257.	0.8	9
17	Methodologies of COLDICE and Cryo-PID studies: details make the difference. Annals of Translational Medicine, 2020, 8, 781-781.	0.7	1
18	Mepolizumab effectiveness and identification of super-responders in severe asthma. European Respiratory Journal, 2020, 55, 1902420.	3.1	124

#	Article	IF	CITATIONS
19	Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium. Journal of Allergy and Clinical Immunology, 2020, 145, 1562-1573.	1.5	35
20	Epithelial Mesenchymal Transition in Respiratory Disease. Chest, 2020, 157, 1591-1596.	0.4	18
21	Airway epithelial-targeted nanoparticles for asthma therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L500-L509.	1.3	23
22	Senescence of IPF Lung Fibroblasts Disrupt Alveolar Epithelial Cell Proliferation and Promote Migration in Wound Healing. Pharmaceutics, 2020, 12, 389.	2.0	30
23	Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner. Clinical Science, 2020, 134, 889-905.	1.8	28
24	The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest, 2019, 156, 774-782.	0.4	133
25	Peering deeper into asthmatic lungs. Respirology, 2019, 24, 1037-1038.	1.3	0
26	Gastroesophageal reflux and antacid therapy in IPF: analysis from the Australia IPF Registry. BMC Pulmonary Medicine, 2019, 19, 84.	0.8	26
27	Eligibility for antiâ€fibrotic treatment in idiopathic pulmonary fibrosis depends on the predictive equation used for pulmonary function testing. Respirology, 2019, 24, 988-995.	1.3	7
28	STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 61-73.	1.4	52
29	Implications of the diagnostic criteria of idiopathic pulmonary fibrosis in clinical practice: Analysis from the Australian Idiopathic Pulmonary Fibrosis Registry. Respirology, 2019, 24, 361-368.	1.3	24
30	Cryobiopsy versus open lung biopsy in the diagnosis of interstitial lung disease (COLDICE): protocol of a multicentre study. BMJ Open Respiratory Research, 2019, 6, e000443.	1.2	17
31	The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 2018, 97, 108-117.	1.2	49
32	The effect of inhaled corticosteroids on bone mineral density measured by quantitative ultrasonography in an older population. Clinical Respiratory Journal, 2018, 12, 659-665.	0.6	4
33	Mitochondrial dysfunction contributes to the senescent phenotype of <scp>IPF</scp> lung fibroblasts. Journal of Cellular and Molecular Medicine, 2018, 22, 5847-5861.	1.6	65
34	Diagnosis and management of idiopathic pulmonary fibrosis: Thoracic Society of Australia and New Zealand and Lung Foundation Australia position statements summary. Medical Journal of Australia, 2018, 208, 82-88.	0.8	13
35	Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L162-L172.	1.3	114
36	Disease progression in idiopathic pulmonary fibrosis with mild physiological impairment: analysis from the Australian IPF registry. BMC Pulmonary Medicine, 2018, 18, 19.	0.8	58

#	Article	IF	Citations
37	Inflammatory insights into airway remodelling in asthma. Respirology, 2018, 23, 1084-1085.	1.3	6
38	Thoracic ultrasound recognition of competence: A position paper of the Thoracic Society of Australia and New Zealand. Respirology, 2017, 22, 405-408.	1.3	34
39	Baseline characteristics of idiopathic pulmonary fibrosis: analysis from the Australian Idiopathic Pulmonary Fibrosis Registry. European Respiratory Journal, 2017, 49, 1601592.	3.1	174
40	Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L772-L782.	1.3	30
41	Determinants and outcomes of prolonged anxiety and depression in idiopathic pulmonary fibrosis. European Respiratory Journal, 2017, 50, 1700168.	3.1	32
42	Treatment of idiopathic pulmonary fibrosis in <scp>A</scp> ustralia and <scp>N</scp> ew Zealand: <scp>A</scp> position statement from the <scp>T</scp> horacic <scp>S</scp> ociety of <scp>A</scp> ustralia and <scp>N</scp> ew <scp>Z</scp> ealand and the <scp>L</scp> ung <scp>F</scp> oundation <scp>A</scp> ustralia. Respirology, 2017, 22, 1436-1458.	1.3	39
43	Targeted therapeutics for severe refractory asthma: monoclonal antibodies. Expert Review of Clinical Pharmacology, 2016, 9, 927-941.	1.3	28
44	Airway Surfactant Protein D Deficiency inÂAdults With Severe Asthma. Chest, 2016, 149, 1165-1172.	0.4	52
45	IL- $1\hat{l}_{\pm}$ mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit. Tissue Barriers, 2016, 4, e1206378.	1.6	16
46	Response. Chest, 2016, 150, 474.	0.4	0
47	Toll-like Receptor 7 Is Reduced in Severe Asthma and Linked to an Altered MicroRNA Profile. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 26-37.	2.5	55
48	Chronic granulomatous disease presenting as refractory pneumonia in late adulthood. Respirology Case Reports, 2015, 3, 54-56.	0.3	9
49	Clinical assessment of speech correlates well with lung function during induced bronchoconstriction. Npj Primary Care Respiratory Medicine, 2015, 25, 15006.	1.1	6
50	Asthmatic and Normal Respiratory Epithelial Cells Respond Differently to Mechanical Apical Stress. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 477-480.	2.5	21
51	Potentially Pathogenic Airway Bacteria and Neutrophilic Inflammation in Treatment Resistant Severe Asthma. PLoS ONE, 2014, 9, e100645.	1.1	258
52	Case series reporting the effectiveness of mycophenolate mofetil in treatment-resistant asthma. European Respiratory Journal, 2013, 42, 1134-1137.	3.1	5
53	Epithelial Injury and Repair in Airways Diseases. Chest, 2013, 144, 1906-1912.	0.4	75
54	Resistinâ€like moleculeâ€Î² is induced following bronchoconstriction of asthmatic airways. Respirology, 2012, 17, 1094-1100.	1.3	15

#	Article	IF	CITATIONS
55	Effect of Bronchoconstriction on Airway Remodeling in Asthma. New England Journal of Medicine, 2011, 364, 2006-2015.	13.9	491
56	Repeated high-dose inhalation allergen challenge in asthma. Clinical Respiratory Journal, 2011, 5, 150-155.	0.6	10