Shengjie Peng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5537739/shengjie-peng-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

154	10,145	54	98
papers	citations	h-index	g-index
161	12,122	10.8	6.5
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
154	Heterointerface Engineering of Hierarchically Assembling Layered Double Hydroxides on Cobalt Selenide as Efficient Trifunctional Electrocatalysts for Water Splitting and Zinc-Air Battery Advanced Science, 2022, e2104522	13.6	7
153	Simple preparation of Si/N-doped carbon anodes from photovoltaic industry waste for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2022 , 890, 161792	5.7	6
152	Rational design of few-layer FePS3 nanosheets@N-doped carbon composites as anodes for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2022 , 427, 130882	14.7	6
151	Superior thermal-charging supercapacitors with bio-inspired electrodes of ultra-high surface areas <i>IScience</i> , 2022 , 25, 104113	6.1	O
150	Ligand and temperature effects of porous palladium nanoparticle ensembles with grain boundaries for highly efficient electrocatalytic CO2 reduction. <i>Journal of Materials Science</i> , 2022 , 57, 7276	4.3	О
149	Interfacial coupling porous cobalt nitride nanosheets array with N-doped carbon as robust trifunctional electrocatalysts for water splitting and Zn-air battery. <i>Chemical Engineering Journal</i> , 2022 , 437, 135281	14.7	1
148	In situ construction of thiol-silver interface for selectively electrocatalytic CO2 reduction. <i>Nano Research</i> , 2022 , 15, 3283-3289	10	3
147	Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single-Atom for Metal-Air Batteries <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	18
146	Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. <i>Energy and Environmental Science</i> , 2021 , 14, 6419-6427	35.4	28
145	Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. <i>Science China Materials</i> , 2021 , 64, 1127-1138	7.1	10
144	Sub-2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis. <i>Advanced Functional Materials</i> , 2021 , 31, 2100618	15.6	52
143	CaV6O16BH2O nanorods as cathode for high-performance aqueous zinc-ion battery. <i>Materials Letters</i> , 2021 , 287, 129285	3.3	7
142	Hierarchical TiCT MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO Batteries. <i>ACS Nano</i> , 2021 , 15, 8407-8417	16.7	17
141	Dual-Sites Coordination Engineering of Single Atom Catalysts for Flexible MetalAir Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101242	21.8	71
140	All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS@C/CNT Cathode. <i>Nano-Micro Letters</i> , 2021 , 13, 159	19.5	6
139	In-situ formation of Co1NS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 421, 12775	5 ^{14.7}	17
138	Stable bismuth phosphosulfide nanoparticle encapsulation into hollow multi-channel carbon nanofibers toward high performance sodium storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 17336-1	1 73 43	2

(2020-2021)

137	Dual-Active Sites Engineering of N-Doped Hollow Carbon Nanocubes Confining Bimetal Alloys as Bifunctional Oxygen Electrocatalysts for Flexible Metal-Air Batteries. <i>Small</i> , 2021 , 17, e2007239	11	20
136	Facile synthesis of self-organized single crystalline TiOF2 nanotubes for photocatalytic hydrogen evolution. <i>Solid State Sciences</i> , 2021 , 117, 106627	3.4	2
135	Hierarchical FeC/MnO2 composite with in-situ grown CNTs as an advanced trifunctional catalyst for water splitting and MetalAir batteries. <i>Ceramics International</i> , 2021 , 47, 18424-18432	5.1	4
134	FeNi nanoparticles encapsulated in Nitrogen-doped carbon frame for efficient and stable Al-air batteries. <i>Materials Letters</i> , 2021 , 296, 129890	3.3	3
133	Electronic Modulation Caused by Interfacial Ni-O-M (M=Ru, Ir, Pd) Bonding for Accelerating Hydrogen Evolution Kinetics. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22276-22282	16.4	37
132	Electronic Modulation Caused by Interfacial Ni-O-M (M=Ru, Ir, Pd) Bonding for Accelerating Hydrogen Evolution Kinetics. <i>Angewandte Chemie</i> , 2021 , 133, 22450-22456	3.6	12
131	Molybdenum Carbide-Embedded Multichannel Hollow Carbon Nanofibers as Bifunctional Catalysts for Water Splitting. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1957-1962	4.5	4
130	Plasma-Treated Ultrathin Ternary FePSe Nanosheets as a Bifunctional Electrocatalyst for Efficient Zinc-Air Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 29393-29403	9.5	5
129	Single-layer carbon-coated FeCo alloy nanoparticles embedded in single-walled carbon nanotubes for high oxygen electrocatalysis. <i>Chemical Communications</i> , 2020 , 56, 6842-6845	5.8	21
128	Acceptor-Doping Accelerated Charge Separation in Cu O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18463-18467	16.4	31
127	Facile Synthesis of FePS Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage. <i>Nano-Micro Letters</i> , 2020 , 12, 54	19.5	31
126	Emerging 2D-Layered MnPS3/rGO composite as a superior anode for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 831, 154775	5.7	7
125	Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-air batteries. <i>Chemical Engineering Journal</i> , 2020 , 401, 126088	14.7	24
124	Electrospinning of Nanofibers for Battery Applications 2020 ,		1
123	Electrospinning of Nanofibers for Zn-Air Battery 2020 , 121-139		
122	Electrospinning of Nanofibers for Li-Air Battery 2020 , 141-156		
121	Few-layer FePS3 decorated with thin MoS2 nanosheets for efficient hydrogen evolution reaction in alkaline and acidic media. <i>Applied Surface Science</i> , 2020 , 525, 146623	6.7	15
120	Controllable Design of MoS Nanosheets Grown on Nitrogen-Doped Branched TiO /C Nanofibers: Toward Enhanced Sodium Storage Performance Induced by Pseudocapacitance Behavior. <i>Small</i> , 2020 , 16, e1904589	11	13

119	Facile synthesis of three-dimensional spherical Ni(OH)2/NiCo2O4 heterojunctions as efficient bifunctional electrocatalysts for water splitting. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 306	0 ⁴⁷ 30€	5 10
118	Hierarchical Fe C-Mo C-Carbon Hybrid Electrocatalysts Promoted through a Strong Charge-Transfer Effect. <i>ChemSusChem</i> , 2020 , 13, 5280-5287	8.3	3
117	Electrospun Inorganic Nanofibers for Oxygen Electrocatalysis: Design, Fabrication, and Progress. <i>Advanced Energy Materials</i> , 2020 , 10, 1902115	21.8	60
116	MoS2 Nanosheets Functionalized Multichannel Hollow Mo2N/Carbon Nanofibers as a Robust Bifunctional Catalyst for Water Electrolysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14179-	14489	8
115	X-ray Studies of High-Performance Lithium-Ion Storage in Keplerate-Type Polyoxometalate Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 40296-40309	9.5	4
114	Controlled synthesis of porous CaCo2O4 nanoflowers and their multifunctional applications for lithium ion batteries and oxygen evolution reaction. <i>Journal of Alloys and Compounds</i> , 2020 , 812, 152099	95.7	7
113	One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. <i>Energy Storage Materials</i> , 2020 , 25, 443-476	19.4	52
112	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. <i>Energy and Environmental Science</i> , 2019 , 12, 2148-2160	35.4	85
111	Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. <i>Applied Catalysis B: Environmental</i> , 2019 , 257, 117855	21.8	144
110	In Situ Fabrication of Branched TiO /C Nanofibers as Binder-Free and Free-Standing Anodes for High-Performance Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e1901584	11	28
109	Carbon-Based Alloy-Type Composite Anode Materials toward Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e19	9 00 628	330
108	Ni3ZnC0.7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting. <i>Carbon</i> , 2019 , 148, 496-503	10.4	36
107	Atomically Transition Metals on Self-Supported Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc-Air Batteries. <i>Advanced Materials</i> , 2019 , 31, e1808267	24	265
106	Sodium-Ion Batteries: In Situ Fabrication of Branched TiO2/C Nanofibers as Binder-Free and Free-Standing Anodes for High-Performance Sodium-Ion Batteries (Small 30/2019). <i>Small</i> , 2019 , 15, 197	d1 58	О
105	Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. <i>Advanced Materials</i> , 2019 , 31, e1905622	24	340
104	Fabrication of hierarchically one-dimensional ZnxCd1-xS/NiTiO3 nanostructures and their enhanced photocatalytic water splitting activity. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 30974-30985	6.7	10
103	Electrospinning techniques for Li, Na and K-ion batteries. <i>Current Opinion in Electrochemistry</i> , 2019 , 18, 106-112	7.2	8
102	Metal-organic framework derived Co@NC/CNT hybrid as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 32054-32065	6.7	36

101	Electrospun NiCo2O4 nanotubes as anodes for Li- and Na-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 1286-1293	5.7	23
100	Controlled synthesis of unique CoS nanostructures with carbon coating as advanced electrode for solid-state asymmetric supercapacitors. <i>Journal of Colloid and Interface Science</i> , 2019 , 540, 389-397	9.3	20
99	Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. <i>Carbon</i> , 2019 , 142, 379-387	10.4	82
98	Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification. <i>Chemistry of Materials</i> , 2019 , 31, 146-160	9.6	75
97	Deflagration synthesis of nitrogen/fluorine co-doped hollow carbon nanoparticles with excellent oxygen reduction performance. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1307-1313	6.8	11
96	Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. <i>Progress in Polymer Science</i> , 2018 , 86, 40-84	29.6	128
95	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13633-13643	13	44
94	Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. <i>ACS Applied Energy Materials</i> , 2018 , 1, 377-386	6.1	34
93	One-dimensional MgxTiyOx+2y nanostructures: General synthesis and enhanced photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 332-339	21.8	7
92	A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, 1703824	24	199
91	Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13644-13653	16.4	288
90	Electronic and Defective Engineering of Electrospun CaMnO3 Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable ZincAir Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1800612	21.8	171
89	Polyester@MXene nanofibers-based yarn electrodes. <i>Journal of Power Sources</i> , 2018 , 396, 683-690	8.9	88
88	Hydrothermal synthesis of NaCa2Si3O8(OH) nanowires and its application in Fe(III) ions adsorption. <i>Chemical Physics Letters</i> , 2018 , 706, 461-464	2.5	2
87	Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4949-4961	13	101
86	Design of 3-Dimensional Hierarchical Architectures of Carbon and Highly Active Transition Metals (Fe, Co, Ni) as Bifunctional Oxygen Catalysts for Hybrid LithiumAir Batteries. <i>Chemistry of Materials</i> , 2017 , 29, 1665-1675	9.6	91
85	Large-scale synthesis of highly uniform Fe 1 $\!$ $\!$ $\!$ S nanostructures as a high-rate anode for sodium ion batteries. <i>Nano Energy</i> , 2017 , 37, 81-89	17.1	137
84	Neural interfaces engineered via micro- and nanostructured coatings. <i>Nano Today</i> , 2017 , 14, 59-83	17.9	46

83	Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7507-7515	13	59
82	Enhanced Charge Carrier Transport and Device Performance Through Dual-Cesium Doping in Mixed-Cation Perovskite Solar Cells with Near Unity Free Carrier Ratios. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 2358-2368	9.5	24
81	Thin MoS2 nanosheets grafted MOFs-derived porous CoNC flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23898-23908	13	98
80	In Situ Fabrication of Hierarchically Branched TiO Nanostructures: Enhanced Performance in Photocatalytic H Evolution and Li-Ion Batteries. <i>Small</i> , 2017 , 13, 1702357	11	19
79	Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. Journal of Materials Chemistry A, 2017 , 5, 23361-23368	13	88
78	Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 25882-25890	6.7	29
77	Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. <i>Electrochimica Acta</i> , 2017 , 247, 400-409	6.7	59
76	Electrospun hollow nanofibers for advanced secondary batteries. <i>Nano Energy</i> , 2017 , 39, 111-139	17.1	147
75	Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. <i>Nano Energy</i> , 2016 , 22, 361-395	17.1	200
74	Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. <i>Chemical Society Reviews</i> , 2016 , 45, 1225-41	58.5	274
73	Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. <i>Carbon</i> , 2016 , 99, 556-563	10.4	189
72	Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. <i>Journal of Power Sources</i> , 2016 , 306, 481-488	8.9	210
71	Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. <i>Nano Energy</i> , 2016 , 19, 307-317	17.1	26
70	Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. <i>Small</i> , 2016 , 12, 1359-68	11	347
69	A General Strategy toward Carbon Cloth-Based Hierarchical Films Constructed by Porous Nanosheets for Superior Photocatalytic Activity. <i>Small</i> , 2015 , 11, 2429-36	11	25
68	3D Cu-doped CoS porous nanosheet films as superior counterelectrodes for quantum dot-sensitized solar cells. <i>Nano Energy</i> , 2015 , 16, 163-172	17.1	42
67	In Response: Applications of carbon-based nanomaterials for water treatmentA business perspective. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 957-8	3.8	
66	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li D 2 batteries. <i>Nano Energy</i> , 2015 , 13, 718-726	17.1	36

(2013-2015)

65	Copper vanadates/polyaniline composites as anode materials for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 20692-20698	3.7	11
64	Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13957-63	16.4	92
63	Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. <i>Advanced Energy Materials</i> , 2015 , 5, 1401172	21.8	454
62	A Flexible Quasi-Solid-State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V2O5 Nanosheets on Carbon Nanofibers. <i>Advanced Energy Materials</i> , 2015 , 5, 1500753	21.8	178
61	Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. <i>ACS Nano</i> , 2015 , 9, 1945-54	16.7	302
60	MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics. <i>Advanced Functional Materials</i> , 2014 , 24, 2155-2162	15.6	362
59	Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16526-16535	3.8	94
58	Synthesis of porous, hollow metal MCO(3) (M=Mn, Co, Ca) microstructures and adsorption properties thereof. <i>Chemistry - A European Journal</i> , 2014 , 20, 421-5	4.8	22
57	Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5597-5601	13	278
56	Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12594-9	16.4	131
55	Facile synthesis of highly stable heterogeneous catalysts by entrapping metal nanoparticles within mesoporous carbon. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5847	13	24
54	Hollow Spheres: MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics (Adv. Funct. Mater. 15/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2154-2154	15.6	14
53	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. <i>Angewandte Chemie</i> , 2014 , 126, 12802-12807	3.6	149
52	Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. <i>ChemSusChem</i> , 2014 , 7, 2212-20	8.3	84
51	Zn2SiO4 urchin-like microspheres: controlled synthesis and application in lithium-ion batteries. <i>CrystEngComm</i> , 2014 , 16, 6195-6202	3.3	31
50	Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2014 , 23, 301-307	12	17
49	Carbon buffered-transition metal oxidenanoparticlegraphene hybrid nanosheets as high-performance anode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6901-6907	13	27
48	The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10935	13	227

47	Preparation of polyaniline-coated EAgVO3 nanowires and their application in lithium-ion battery. <i>Materials Letters</i> , 2013 , 110, 168-171	3.3	16
46	In situ growth of NiCo(2)S(4) nanosheets on graphene for high-performance supercapacitors. <i>Chemical Communications</i> , 2013 , 49, 10178-80	5.8	347
45	Solvothermal-induced conversion of one-dimensional multilayer nanotubes to two-dimensional hydrophilic VOx nanosheets: synthesis and water treatment application. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 10389-94	9.5	14
44	Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte. <i>Electrochimica Acta</i> , 2013 , 105, 447-454	6.7	22
43	Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7630	13	93
42	Immobilization of plant polyphenol stabilized-Sn nanoparticles onto carbon nanotubes and their application in rechargeable lithium ion batteries. <i>RSC Advances</i> , 2013 , 3, 5310	3.7	9
41	Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced via electrospinning technique. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 852-859	13	59
40	Controlled synthesis of BiOCl hierarchical self-assemblies with highly efficient photocatalytic properties. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 258-68	4.5	81
39	Synthesis of porous amorphous FePO4 nanotubes and their lithium storage properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 1568-72	4.8	30
38	Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. <i>CrystEngComm</i> , 2013 , 15, 1922	3.3	74
37	Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. <i>Chemistry - A European Journal</i> , 2013 , 19, 5892-8	4.8	220
36	Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. <i>Nanoscale</i> , 2013 , 5, 134-8	7.7	40
35	Electrospun hierarchical CaCo2O4 nanofibers with excellent lithium storage properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 14823-30	4.8	23
34	Solution synthesis of CdIn2S4 nanocrystals and their photoelectrical application. <i>Materials Letters</i> , 2012 , 79, 216-218	3.3	16
33	Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	73
32	TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells. <i>Langmuir</i> , 2012 , 28, 6202-6	4	29
31	Facile approach to prepare porous CaSnOIhanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. <i>ACS Applied Materials & District Action Section</i> , 4, 6005-12	9.5	65
30	Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells. <i>Chemical Communications</i> , 2012 , 48, 10865-7	5.8	54

(2009-2012)

In situ synthesis of platinum/polyaniline composite counter electrodes for flexible dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5308		47	
Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8523-9	3.6	44	
Electrospun conductive polyaniline polylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. <i>RSC Advances</i> , 2012 , 2, 652-657	3.7	68	
Electrospun Metal Oxides for Energy Applications. <i>Green Energy and Technology</i> , 2012 , 97-108	0.6	2	
Self-Supporting Three-Dimensional ZnIn2S4/PVDF P oly(MMA-co-MAA) Composite Mats with Hierarchical Nanostructures for High Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13849-13857	3.8	45	
Size-controlled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization. <i>Science China Chemistry</i> , 2012 , 55, 1236-1241	7.9	14	
Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15718		35	
Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 223, 97-102	4.7	69	
Which is a superior material for scattering layer in dye-sensitized solar cells lectrospun rice grain- or nanofiber-shaped TiO2?. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12210		59	
Facile solution deposition of ZnIn2S4 nanosheet films on FTO substrates for photoelectric application. <i>Nanoscale</i> , 2011 , 3, 2602-8	7.7	69	
All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO2 Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6814-6821	3.8	52	
Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. <i>Solid State Sciences</i> , 2009 , 11, 433-438	3.4	33	
High-surface-area microporous carbon as the efficient photocathode of dye-sensitized solar cells. <i>Solid State Sciences</i> , 2009 , 11, 2051-2055	3.4	23	
Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. <i>Journal of Power Sources</i> , 2009 , 187, 620-626	8.9	38	
Ni1 $\[\]$ Pt x (x=0 $\[\]$ 0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. <i>Nano Research</i> , 2009 , 2, 484-492	10	42	
An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells. <i>Journal of Power Sources</i> , 2009 , 193, 878-884	8.9	15	
Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. <i>Journal of Alloys and Compounds</i> , 2009 , 481, 786-791	5.7	74	
Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes. ACS Applied Materials & amp; Interfaces, 2009, 1, 944-50	9.5	65	
	Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. <i>Physical Chemistry Chemical Physics</i> , 2012, 14, 8523-9 Electrospun conductive polyanilineBolylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. <i>RSC Advances</i> , 2012, 2, 652-657 Electrospun Metal Oxides for Energy Applications. <i>Green Energy and Technology</i> , 2012, 97-108 Self-Supporting Three-Dimensional ZnIn254/PVDFBoly(MMA-co-MAA) Composite Mats with Hierarchical Nanostructures for High Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2012, 116, 13849-13857 Size-controlled chalcopyrite CulnS2 nanocrystals: One-pot synthesis and optical characterization. <i>Science China Chemistry</i> , 2012, 55, 1236-1241 Controlled synthesis and photoelectric application of Znin254 nanosheet/TiO2 nanoparticle composite films. <i>Journal of Materials Chemistry</i> , 2011, 21, 15718 Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011, 223, 97-102 Which is a superior material for scattering layer in dye-sensitized solar cells#lectrospun rice grain- or nanofiber-shaped TiO22. <i>Journal of Materials Chemistry</i> , 2011, 21, 12210 Facile solution deposition of Znin254 nanosheet films on FTO substrates for photoelectric application. <i>Nanoscale</i> , 2011, 3, 2602-8 All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium lodide Ionic Polymer/SiO2 Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. <i>Journal of Physical Chemistry</i> , C, 2010, 114, 6814-6821 Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. <i>Solid State Sciences</i> , 2009, 11, 2051-2055 Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. <i>Journal of Power Sources</i> , 2009, 187, 620-626 Nitil Pt x (x=00.08) films as the photocathod	Synthesis of AginS2 nanocrystal ink and its photoelectrical application. <i>Physical Chemistry Chemical Physics</i> , 2012, 14, 8523-9 Electrospun conductive polyanilineBolylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. <i>RSC Advances</i> , 2012, 2, 652-657 Electrospun Metal Oxides for Energy Applications. <i>Green Energy and Technology</i> , 2012, 97-108 Self-Supporting Three-Dimensional Znln2S4/PVDFRoly(IMMA-co-MAA) Composite Mats with Hierarchical Nanostructures for High Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2012, 116, 13849-13857 Size-controlled chalcopyrite CulnS2 nanocrystals: One-pot synthesis and optical characterization. <i>Science China Chemistry</i> , 2012, 55, 1236-1241 Controlled synthesis and photoelectric application of Znln2S4 nanosheet/TiO2 nanoparticle composite films. <i>Journal of Materials Chemistry</i> , 2011, 21, 15718 Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011, 223, 97-102 Which is a superior material for scattering layer in dye-sensitized solar cellsBlectrospun rice grain- or nanofiber-shaped TiO2?. <i>Journal of Materials Chemistry</i> , 2011, 21, 12210 Facile solution deposition of Znln2S4 nanosheet films on FTO substrates for photoelectric application. <i>Nanoscole</i> , 2011, 3, 2602-8 All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO2 Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. <i>Journal of Physical Chemistry</i> , 2011, 21, 114, 6814-6821 Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. <i>Solid State Sciences</i> , 2009, 11, 433-438 High-surface-area microporous carbon as the efficient photocathode of dye-sensitized solar cells. <i>Solumal of Power Sources</i> , 2009, 187, 620-626 NiNiNP x (x=00.08) films as the photocathode of dye-sensitized solar cells with high eff	Synthesis of AginS2 nanocrystal ink and its photoelectrical application. Physical Chemistry Chemical Physics, 2012, 14, 8523-9 Electrospun conductive polyanilineBolylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. RSC Advances, 2012, 2, 652-657 Electrospun Metal Oxides for Energy Applications. Green Energy and Technology, 2012, 97-108 68 Self-Supporting Three-Dimensional Znin2S4/PVDFBoly(MMA-co-MAA) Composite Mats with Hierarchical Nanostructures for High Photocatalytic Activity. Journal of Physical Chemistry, C, 2012, 116, 13849-13857 Size-controlled chalcopyrite CuinS2 nanocrystals: One-pot synthesis and optical characterization. Science China Chemistry, 2012, 55, 1236-1241 Controlled synthesis and photoelectric application of Znin2S4 nanosheet/TiO2 nanoparticle composite Films. Journal of Materials Chemistry, 2011, 21, 15718 Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells. Journal of Photochology A: Chemistry, 2011, 23, 97-102 Which is a superior material for scattering layer in dye-sensitized solar cellsBelectrospun rice grain- or nanofiber-shaped TiO2?. Journal of Materials Chemistry, 2011, 21, 12210 59 Facile solution deposition of Znin2S4 nanosheet films on FTO substrates for photoelectric application. Nanoscale, 2011, 3, 2602-8 All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO2 Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. Journal of Physical Chemistry C, 2010, 114, 6814-6821 Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. Solid State Sciences, 2009, 11, 433-438 High-surface-area microporous carbon as the efficient photocathode of dye-sensitized solar cells. Solid State Sciences, 2009, 11, 33-343 High-surface-area microporous carbon as the efficient phynidine-based organic dye containing the diphenylvinyl and rhodanine-3-ac

11	Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells. <i>Journal of Power Sources</i> , 2008 , 183, 792-798	8.9	41
10	Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 197, 260-265	4.7	56
9	Shape-controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures. <i>Journal of Crystal Growth</i> , 2007 , 305, 99-103	1.6	44
8	Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres. <i>Materials Chemistry and Physics</i> , 2007 , 106, 296-300	4.4	30
7	Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7222-9	16.4	345
6	Thioglycolic Acid-assisted Solvothermal Synthesis of CuInS2with Controllable Microstructures. <i>Chemistry Letters</i> , 2006 , 35, 1050-1051	1.7	8
5	Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single-Atom for Metal Air Batteries. <i>Angewandte Chemie</i> , e202116068	3.6	1
4	In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting. <i>Inorganic Chemistry Frontiers</i> ,	6.8	5
3	Recent Progress of Electrospun Nanofibers for ZincAir Batteries. Advanced Fiber Materials,1	10.9	2
2	Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting. <i>Inorganic Chemistry Frontiers</i> ,	6.8	4
1	Lattice-Matching Formed Mesoporous Transition Metal Oxide Heterostructures Advance Water Splitting by Active Fe D [1] Bridges. <i>Advanced Energy Materials</i> ,2200067	21.8	16