
Steve Brunton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5537586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3932-3937.	3.3	2,237
2	Machine Learning for Fluid Mechanics. Annual Review of Fluid Mechanics, 2020, 52, 477-508.	10.8	1,324
3	On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1, 391-421.	0.4	1,023
4	Modal Analysis of Fluid Flows: An Overview. AIAA Journal, 2017, 55, 4013-4041.	1.5	1,020
5	Data-driven discovery of partial differential equations. Science Advances, 2017, 3, e1602614.	4.7	821
6	Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 2018, 9, 4950.	5.8	606
7	Dynamic Mode Decomposition with Control. SIAM Journal on Applied Dynamical Systems, 2016, 15, 142-161.	0.7	551
8	Data-driven discovery of coordinates and governing equations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22445-22451.	3.3	397
9	Closed-Loop Turbulence Control: Progress and Challenges. Applied Mechanics Reviews, 2015, 67, .	4.5	369
10	Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. PLoS ONE, 2016, 11, e0150171.	1.1	325
11	Chaos as an intermittently forced linear system. Nature Communications, 2017, 8, 19.	5.8	312
12	Modal Analysis of Fluid Flows: Applications and Outlook. AIAA Journal, 2020, 58, 998-1022.	1.5	301
13	Maximum Power Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremum Seeking Control. IEEE Transactions on Power Electronics, 2010, 25, 2531-2540.	5.4	270
14	Multiresolution Dynamic Mode Decomposition. SIAM Journal on Applied Dynamical Systems, 2016, 15, 713-735.	0.7	266
15	Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns. IEEE Control Systems, 2018, 38, 63-86.	1.0	259
16	Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2, 52-63.	1.4	258
17	Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180335.	1.0	238
18	Constrained sparse Galerkin regression. Journal of Fluid Mechanics, 2018, 838, 42-67.	1.4	191

#	Article	IF	CITATIONS
19	Generalizing Koopman Theory to Allow for Inputs and Control. SIAM Journal on Applied Dynamical Systems, 2018, 17, 909-930.	0.7	186
20	Data-Driven Identification of Parametric Partial Differential Equations. SIAM Journal on Applied Dynamical Systems, 2019, 18, 643-660.	0.7	167
21	Sparse reduced-order modelling: sensor-based dynamics to full-state estimation. Journal of Fluid Mechanics, 2018, 844, 459-490.	1.4	155
22	Model selection for dynamical systems via sparse regression and information criteria. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170009.	1.0	149
23	Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Fluid Mechanics and Its Applications, 2017, , .	0.1	140
24	Sparse Identification of Nonlinear Dynamics with Control (SINDYc)**SLB acknowledges support from the U.S. Air Force Center of Excellence on Nature Inspired Flight Technologies and Ideas (FA9550-14-1-0398). JLP thanks Bill and Melinda Gates for their active support of the Institute of Disease Modeling and their sponsorship through the Global Good Fund. JNK acknowledges support from the U.S. Air Force Office of Scientific Research (FA9550-09-0174) IFAC-PapersOnLine, 2016, 49, 710-715.	0.5	139
25	Enhancing computational fluid dynamics with machine learning. Nature Computational Science, 2022, 2, 358-366.	3.8	130
26	Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna. IEEE Transactions on Antennas and Propagation, 2015, 63, 1881-1886.	3.1	118
27	Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos, 2010, 20, 017503.	1.0	113
28	Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2, 165-191.	0.4	110
29	Modern Koopman Theory for Dynamical Systems. SIAM Review, 2022, 64, 229-340.	4.2	109
30	Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. Journal of Computational Physics, 2019, 396, 483-506.	1.9	107
31	Sparse identification of nonlinear dynamics for rapid model recovery. Chaos, 2018, 28, 063116.	1.0	103
32	Deep learning and model predictive control for self-tuning mode-locked lasers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 617.	0.9	97
33	Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings. SIAM Journal on Applied Dynamical Systems, 2019, 18, 312-333.	0.7	97
34	Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems. SIAM Journal on Applied Dynamical Systems, 2014, 13, 1716-1732.	0.7	95
35	Shallow neural networks for fluid flow reconstruction with limited sensors. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200097.	1.0	95
36	Robust flow reconstruction from limited measurements via sparse representation. Physical Review Fluids, 2019, 4, .	1.0	91

#	Article	IF	CITATIONS
37	A Unified Framework for Sparse Relaxed Regularized Regression: SR3. IEEE Access, 2019, 7, 1404-1423.	2.6	90
38	PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data. Journal of Open Source Software, 2020, 5, 2104.	2.0	89
39	Reduced-order unsteady aerodynamic models at low Reynolds numbers. Journal of Fluid Mechanics, 2013, 724, 203-233.	1.4	87
40	Compressed dynamic mode decomposition for background modeling. Journal of Real-Time Image Processing, 2019, 16, 1479-1492.	2.2	85
41	SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200279.	1.0	85
42	Network structure of two-dimensional decaying isotropic turbulence. Journal of Fluid Mechanics, 2016, 795, .	1.4	82
43	Data-driven discovery of Koopman eigenfunctions for control. Machine Learning: Science and Technology, 2021, 2, 035023.	2.4	79
44	Empirical state-space representations for Theodorsen's lift model. Journal of Fluids and Structures, 2013, 38, 174-186.	1.5	78
45	Sparse Sensor Placement Optimization for Classification. SIAM Journal on Applied Mathematics, 2016, 76, 2099-2122.	0.8	78
46	A Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data. IEEE Access, 2020, 8, 169259-169271.	2.6	75
47	Time-Delay Observables for Koopman: Theory and Applications. SIAM Journal on Applied Dynamical Systems, 2020, 19, 886-917.	0.7	72
48	Robust principal component analysis for modal decomposition of corrupt fluid flows. Physical Review Fluids, 2020, 5, .	1.0	71
49	Sparse Principal Component Analysis via Variable Projection. SIAM Journal on Applied Mathematics, 2020, 80, 977-1002.	0.8	65
50	Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210904.	1.0	65
51	Randomized Dynamic Mode Decomposition. SIAM Journal on Applied Dynamical Systems, 2019, 18, 1867-1891.	0.7	63
52	State-space model identification and feedback control of unsteady aerodynamic forces. Journal of Fluids and Structures, 2014, 50, 253-270.	1.5	62
53	Exploiting sparsity and equation-free architectures in complex systems. European Physical Journal: Special Topics, 2014, 223, 2665-2684.	1.2	61
54	Extremum-Seeking Control of a Mode-Locked Laser. IEEE Journal of Quantum Electronics, 2013, 49, 852-861.	1.0	60

#	Article	IF	CITATIONS
55	Self-Tuning Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 464-471.	1.9	58
56	Dynamic Mode Decomposition for Compressive System Identification. AIAA Journal, 2020, 58, 561-574.	1.5	57
57	Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Optics Express, 2014, 22, 8585.	1.7	56
58	Greedy Sensor Placement With Cost Constraints. IEEE Sensors Journal, 2019, 19, 2642-2656.	2.4	56
59	Model selection for hybrid dynamical systems via sparse regression. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180534.	1.0	53
60	PySINDy: A comprehensive Python package for robust sparse system identification. Journal of Open Source Software, 2022, 7, 3994.	2.0	53
61	Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. Physical Review E, 2015, 92, 033304.	0.8	50
62	Mixing Layer Manipulation Experiment. Flow, Turbulence and Combustion, 2015, 94, 155-173.	1.4	49
63	Predicting shim gaps in aircraft assembly with machine learning and sparse sensing. Journal of Manufacturing Systems, 2018, 48, 87-95.	7.6	49
64	Deep Learning to Accelerate Scatterer-to-Field Mapping for Inverse Design of Dielectric Metasurfaces. ACS Photonics, 2021, 8, 481-488.	3.2	48
65	Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 59.	0.8	45
66	Cluster-based feedback control of turbulent post-stall separated flows. Journal of Fluid Mechanics, 2019, 875, 345-375.	1.4	45
67	Applying machine learning to study fluid mechanics. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1718-1726.	1.5	45
68	Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data. Proceedings of the United States of America, 2018, 115, 10564-10569.	3.3	44
69	Special issue on machine learning and data-driven methods in fluid dynamics. Theoretical and Computational Fluid Dynamics, 2020, 34, 333-337.	0.9	44
70	Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches. Physical Review E, 2021, 104, 015206.	0.8	44
71	Promoting global stability in data-driven models of quadratic nonlinear dynamics. Physical Review Fluids, 2021, 6, .	1.0	44
72	Intracycle angular velocity control of cross-flowÂturbines. Nature Energy, 2017, 2, .	19.8	42

#	Article	IF	CITATIONS
73	Deep model predictive flow control with limited sensor data and online learning. Theoretical and Computational Fluid Dynamics, 2020, 34, 577-591.	0.9	42
74	Discovering time-varying aerodynamics of a prototype bridge by sparse identification of nonlinear dynamical systems. Physical Review E, 2019, 100, 022220.	0.8	41
75	Data-driven resolvent analysis. Journal of Fluid Mechanics, 2021, 918, .	1.4	41
76	Randomized Matrix Decompositions Using <i>R</i> . Journal of Statistical Software, 2019, 89, .	1.8	40
77	Methods for data-driven multiscale model discovery for materials. JPhys Materials, 2019, 2, 044002.	1.8	38
78	Discovery of Physics From Data: Universal Laws and Discrepancies. Frontiers in Artificial Intelligence, 2020, 3, 25.	2.0	38
79	Learning dominant physical processes with data-driven balance models. Nature Communications, 2021, 12, 1016.	5.8	38
80	Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. AIAA Journal, 0, , 1-26.	1.5	37
81	Deeptime: a Python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology, 2022, 3, 015009.	2.4	37
82	Environment identification in flight using sparse approximation of wing strain. Journal of Fluids and Structures, 2017, 70, 162-180.	1.5	36
83	Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems. Complexity, 2018, 2018, 1-16.	0.9	36
84	Characterizing magnetized plasmas with dynamic mode decomposition. Physics of Plasmas, 2020, 27, .	0.7	36
85	Development and validation of warning system of ventricular tachyarrhythmia in patients with heart failure with heart rate variability data. PLoS ONE, 2018, 13, e0207215.	1.1	33
86	Optimal Sensor and Actuator Selection Using Balanced Model Reduction. IEEE Transactions on Automatic Control, 2022, 67, 2108-2115.	3.6	33
87	Data-Driven Methods in Fluid Dynamics: Sparse Classification from Experimental Data. , 2017, , 323-342.		32
88	Deep learning models for global coordinate transformations that linearise PDEs. European Journal of Applied Mathematics, 2021, 32, 515-539.	1.4	31
89	Closed-loop control of experimental shear flows using machine learning. , 2014, , .		30
90	Frequency selection by feedback control in a turbulent shear flow. Journal of Fluid Mechanics, 2016, 797, 247-283.	1.4	30

#	Article	IF	CITATIONS
91	Dimensionality reduction and reduced-order modeling for traveling wave physics. Theoretical and Computational Fluid Dynamics, 2020, 34, 385-400.	0.9	28
92	Nonlinear stochastic modelling with Langevin regression. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210092.	1.0	28
93	DeepGreen: deep learning of Green's functions for nonlinear boundary value problems. Scientific Reports, 2021, 11, 21614.	1.6	27
94	Long-time uncertainty propagation using generalized polynomial chaos and flow map composition. Journal of Computational Physics, 2014, 274, 783-802.	1.9	26
95	Multi-resolution Dynamic Mode Decomposition for Foreground/Background Separation and Object Tracking. , 2015, , .		26
96	Lagrangian coherent structures and inertial particle dynamics. Physical Review E, 2016, 93, 033108.	0.8	26
97	Sparse nonlinear models of chaotic electroconvection. Royal Society Open Science, 2021, 8, 202367.	1.1	26
98	Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics. Nanophotonics, 2015, 4, 459-471.	2.9	25
99	Prevention of lean flame blowout using a predictive chemical reactor network control. Fuel, 2019, 236, 583-588.	3.4	24
100	On the role of nonlinear correlations in reduced-order modelling. Journal of Fluid Mechanics, 2022, 938, .	1.4	24
101	Optimized Sampling for Multiscale Dynamics. Multiscale Modeling and Simulation, 2019, 17, 117-136.	0.6	23
102	Sparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification. IEEE Transactions on Knowledge and Data Engineering, 2018, 30, 1403-1408.	4.0	22
103	SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems. Physical Review Research, 2021, 3, .	1.3	22
104	Spatiotemporal Feedback and Network Structure Drive and Encode Caenorhabditis elegans Locomotion. PLoS Computational Biology, 2017, 13, e1005303.	1.5	22
105	Challenges in dynamic mode decomposition. Journal of the Royal Society Interface, 2021, 18, 20210686.	1.5	21
106	Modeling the Unsteady Aerodynamic Forces on Small-Scale Wings. , 2009, , .		19
107	Networked-oscillator-based modeling and control of unsteady wake flows. Physical Review E, 2018, 97, 063107.	0.8	19
108	Multi-fidelity sensor selection: Greedy algorithms to place cheap and expensive sensors with cost constraints. IEEE Sensors Journal, 2020, , 1-1.	2.4	19

#	Article	IF	CITATIONS
109	Sensor Selection With Cost Constraints for Dynamically Relevant Bases. IEEE Sensors Journal, 2020, 20, 11674-11687.	2.4	19
110	Data-Driven Approximations of Dynamical Systems Operators for Control. Lecture Notes in Control and Information Sciences, 2020, , 197-234.	0.6	19
111	Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210830.	1.0	19
112	Sparsity enabled cluster reduced-order models for control. Journal of Computational Physics, 2018, 352, 388-409.	1.9	18
113	Discovering Conservation Laws from Data for Control. , 2018, , .		18
114	An empirical mean-field model of symmetry-breaking in a turbulent wake. Science Advances, 2022, 8, eabm4786.	4.7	18
115	Bilinear dynamic mode decomposition for quantum control. New Journal of Physics, 2021, 23, 033035.	1.2	17
116	Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data. Machine Learning: Science and Technology, 2022, 3, 015031.	2.4	17
117	Modeling synchronization in forced turbulent oscillator flows. Communications Physics, 2020, 3, .	2.0	16
118	Data-driven nonlinear aeroelastic models of morphing wings for control. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200079.	1.0	16
119	RetinaMatch: Efficient Template Matching of Retina Images for Teleophthalmology. IEEE Transactions on Medical Imaging, 2019, 38, 1993-2004.	5.4	15
120	Deep reinforcement learning for optical systems: A case study of mode-locked lasers. Machine Learning: Science and Technology, 2020, 1, 045013.	2.4	15
121	Phase-consistent dynamic mode decomposition from multiple overlapping spatial domains. Physical Review Fluids, 2020, 5, .	1.0	15
122	SINDy with Control: A Tutorial. , 2021, , .		15
123	Parsimony as the ultimate regularizer for physics-informed machine learning. Nonlinear Dynamics, 2022, 107, 1801-1817.	2.7	15
124	Feedback through graph motifs relates structure and function in complex networks. Physical Review E, 2018, 98, .	0.8	14
125	Randomized CP tensor decomposition. Machine Learning: Science and Technology, 2020, 1, 025012.	2.4	14
126	Structured time-delay models for dynamical systems with connections to Frenet–Serret frame. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210097.	1.0	14

#	Article	IF	CITATIONS
127	Compressed Singular Value Decomposition for Image and Video Processing. , 2017, , .		13
128	Hierarchical deep learning of multiscale differential equation time-steppers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	13
129	Maximum power point tracking for photovoltaic optimization using extremum seeking. , 2009, , .		12
130	Singular Value Decomposition (SVD). , 2019, , 3-46.		10
131	Hybrid Learning Approach to Sensor Fault Detection with Flight Test Data. AIAA Journal, 2021, 59, 3490-3503.	1.5	10
132	Alfvén eigenmode classification based on ECE diagnostics at DIII-D using deep recurrent neural networks. Nuclear Fusion, 2022, 62, 026007.	1.6	10
133	Principal component trajectories for modeling spectrally continuous dynamics as forced linear systems. Physical Review E, 2022, 105, 015312.	0.8	10
134	Gust mitigation through closed-loop control. II. Feedforward and feedback control. Physical Review Fluids, 2022, 7, .	1.0	10
135	Sidelobe canceling on a reconfigurable holographic metamaterial antenna. , 2014, , .		9
136	Correction: Modal Analysis of Fluid Flows: An Overview. AIAA Journal, 2020, 58, AU9-AU9.	1.5	9
137	Data-driven modeling of rotating detonation waves. Physical Review Fluids, 2021, 6, .	1.0	9
138	Phase-based control of periodic flows. Journal of Fluid Mechanics, 2021, 927, .	1.4	9
139	Finite-horizon, energy-efficient trajectories in unsteady flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210255.	1.0	9
140	Geometric and control optimization of a two cross-flow turbine array. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8	8
141	PySensors: A Python package for sparse sensor placement. Journal of Open Source Software, 2021, 6, 2828.	2.0	7
142	Go with the FLOW: visualizing spatiotemporal dynamics in optical widefield calcium imaging. Journal of the Royal Society Interface, 2021, 18, 20210523.	1.5	7
143	Data-Driven Stabilization of Periodic Orbits. IEEE Access, 2021, 9, 43504-43521.	2.6	7
144	Near-wake dynamics of a vertical-axis turbine. Journal of Fluid Mechanics, 2022, 935, .	1.4	7

#	Article	IF	CITATIONS
145	Including inputs and control within equation-free architectures for complex systems. European Physical Journal: Special Topics, 2016, 225, 2413-2434.	1.2	6
146	Machine Learning Control (MLC). Fluid Mechanics and Its Applications, 2017, , 11-48.	0.1	6
147	Data-Driven discovery of governing physical laws and their parametric dependencies in engineering, physics and biology. , 2017, , .		6
148	Dynamic Mode Decomposition for Background Modeling. , 2017, , .		6
149	Deep learning of conjugate mappings. Physica D: Nonlinear Phenomena, 2021, 427, 133008.	1.3	6
150	Smoothing and parameter estimation by soft-adherence to governing equations. Journal of Computational Physics, 2019, 398, 108860.	1.9	5
151	Randomized methods to characterize large-scale vortical flow networks. PLoS ONE, 2019, 14, e0225265.	1.1	5
152	Extraction of Instantaneous Frequencies and Amplitudes in Nonstationary Time-Series Data. IEEE Access, 2021, 9, 83453-83466.	2.6	5
153	Dynamic mode decomposition for aero-optic wavefront characterization. Optical Engineering, 2022, 61, .	0.5	5
154	Self-tuning fiber lasers: machine learning applied to optical systems. , 2014, , .		4
155	Dynamic Mode Decomposition for Robust PCA with Applications to Foreground/Background Subtraction in Video Streams and Multi-Resolution Analysis. , 2016, , 441-456.		4
156	Gust mitigation through closed-loop control. I. Trailing-edge flap response. Physical Review Fluids, 2022, 7, .	1.0	4
157	An extremum-seeking controller for dynamic metamaterial antenna operation. , 2015, , .		3
158	Linear Control Theory. , 2019, , 276-320.		3
159	Fourier and Wavelet Transforms. , 2019, , 47-83.		3
160	Intensity-Mosaic: automatic panorama mosaicking of disordered images with insufficient features. Journal of Medical Imaging, 2021, 8, 054002.	0.8	3
161	Advanced control methods for cross-flow turbines. International Marine Energy Journal, 2018, 1, 129-138.	0.4	3
162	Improved Approximations to Wagner Function Using Sparse Identification of Nonlinear Dynamics. AIAA Journal, 2022, 60, 1691-1707.	1.5	3

#	ARTICLE	IF	CITATIONS
163	Swarm Modeling With Dynamic Mode Decomposition. IEEE Access, 2022, 10, 59508-59521.	2.6	3
164	Taming Nonlinear Dynamics with MLC. Fluid Mechanics and Its Applications, 2017, , 93-120.	0.1	2
165	Online Interpolation Point Refinement for Reduced-Order Models using a Genetic Algorithm. SIAM Journal of Scientific Computing, 2018, 40, B283-B304.	1.3	2
166	SINDy analysis of disturbance and plant model superposition on a rolling delta wing. , 2018, , .		2
167	Data-Driven Dynamical Systems. , 2019, , 229-275.		2
168	Data-Driven Control. , 2019, , 345-372.		2
169	Reduced Order Models (ROMs). , 2019, , 375-402.		2
170	Sparsity and Compressed Sensing. , 2019, , 84-114.		2
171	Neural Networks and Deep Learning. , 2019, , 195-226.		2
172	Learning Precisely Timed Feedforward Control of the Sensor-Denied Inverted Pendulum. , 2020, 4, 731-736.		2
173	Bracketing brackets with bras and kets. Journal of Manufacturing Systems, 2021, 58, 384-391.	7.6	2
174	Data Driven Control of Complex Optical Systems. , 2015, , .		2
175	Projection-tree reduced-order modeling for fast N-body computations. Journal of Computational Physics, 2022, 459, 111141.	1.9	2
176	Self-tuning fiber lasers. Proceedings of SPIE, 2016, , .	0.8	1
177	Leveraging Sparsity and Compressive Sensing for Reduced Order Modeling. Modeling, Simulation and Applications, 2017, , 301-315.	1.3	1
178	Methods of Linear Control Theory. Fluid Mechanics and Its Applications, 2017, , 49-68.	0.1	1
179	Regression and Model Selection. , 2019, , 117-153.		1
180	Data-driven stochastic modeling of coarse-grained dynamics with finite-size effects using Langevin regression. Physica D: Nonlinear Phenomena, 2021, 427, 133004.	1.3	1

#	Article	IF	CITATIONS
181	Data-driven modeling of two-dimensional detonation wave fronts. Wave Motion, 2022, 109, 102879.	1.0	1
182	Dynamic Mode Decomposition for Robust PCA with Applications to Foreground/Background Subtraction in Video Streams and Multi-Resolution Analysis. , 2016, , 19-1-19-16.		0
183	Benchmarking MLC Against Linear Control. Fluid Mechanics and Its Applications, 2017, , 69-91.	0.1	Ο
184	Balanced Models for Control. , 2019, , 321-344.		0
185	Interpolation for Parametric ROMs. , 2019, , 403-435.		0
186	Clustering and Classification. , 2019, , 154-194.		0
187	Physics-informed machine-learning for modeling aero-optics. , 2021, , .		Ο
188	Machine learning for self-tuning optical systems. , 2019, , .		0