
Clare C Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5537473/publications.pdf Version: 2024-02-01

CLADE C YII

#	Article	IF	CITATIONS
1	Physics approaches to the spatial distribution of immune cells in tumors. Reports on Progress in Physics, 2021, 84, 022601.	20.1	10
2	Spatial distribution of B cells and lymphocyte clusters as a predictor of triple-negative breast cancer outcome. Npj Breast Cancer, 2021, 7, 84.	5.2	16
3	Tubulin acetylation promotes penetrative capacity of cells undergoing radial intercalation. Cell Reports, 2021, 36, 109556.	6.4	17
4	Distribution of two-level system couplings to strain and electric fields in glasses at low temperatures. Physical Review B, 2021, 104, .	3.2	4
5	Occupancy and Fractal Dimension Analyses of the Spatial Distribution of Cytotoxic (CD8+) T Cells Infiltrating the Tumor Microenvironment in Triple Negative Breast Cancer. Biophysical Reviews and Letters, 2020, 15, 83-98.	0.8	3
6	Why Phonon Scattering in Glasses is Universally Small at Low Temperatures. Physical Review Letters, 2020, 124, 075902.	7.8	17
7	Occupancy and Fractal Dimension Analyses of the Spatial Distribution of Cytotoxic (CD8+) T Cells Infiltrating the Tumor Microenvironment in Triple Negative Breast Cancer. , 2020, , 63-78.		0
8	Hydrogen as a source of flux noise in SQUIDs. Physical Review B, 2018, 98, .	3.2	11
9	Non-randomness of the anatomical distribution of tumors. Cancer Convergence, 2017, 1, 4.	8.0	6
10	Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Computational Biology, 2017, 13, e1005610.	3.2	9
11	Axonal Transport: A Constrained System. Journal of Neurology and Neuromedicine, 2017, 2, 20-24.	0.9	2
12	Origin and Reduction of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>1</mml:mn><mml:mo stretchy="false">/<mml:mi>f</mml:mi></mml:mo </mml:math> Magnetic Flux Noise in Superconducting Devices. Physical Review Applied, 2016, 6, .	3.8	105
13	P. W. Anderson Seen Through the Eyes of a Student. , 2016, , 5-8.		0
14	Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules. Physical Review Letters, 2015, 115, 077002.	7.8	43
15	Axonal Transport: How High Microtubule Density Can Compensate forÂBoundary Effects in Small-Caliber Axons. Biophysical Journal, 2014, 106, 813-823.	0.5	34
16	Noise in superconducting qubits and spin glasses. , 2013, , .		0
17	Filament-Filament Switching Can Be Regulated by Separation Between Filaments Together with Cargo Motor Number. PLoS ONE, 2013, 8, e54298.	2.5	14
18	Modeling Flux Noise in SQUIDs due to Hyperfine Interactions. Physical Review Letters, 2012, 108, 247001.	7.8	14

Clare C Yu

#	Article	IF	CITATIONS
19	How Molecular Motors Are Arranged on a Cargo Is Important for Vesicular Transport. PLoS Computational Biology, 2011, 7, e1002032.	3.2	66
20	Comparison of Ising Spin Glass Noise to Flux and Inductance Noise in SQUIDs. Physical Review Letters, 2010, 104, 247204.	7.8	22
21	Saturation of two-level systems and charge noise in Josephson junction qubits. Physical Review B, 2009, 79, .	3.2	27
22	Measurement-Noise Maximum as a Signature of a Phase Transition. Physical Review Letters, 2007, 98, 057204.	7.8	18
23	Monte Carlo modeling of single-molecule cytoplasmic dynein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12059-12064.	7.1	63
24	Decoherence in Josephson Qubits from Dielectric Loss. Physical Review Letters, 2005, 95, 210503.	7.8	616
25	Frequency dependence and equilibration of the specific heat of glass-forming liquids. Physical Review E, 2004, 69, 051201.	2.1	26
26	Intracellular actin-based transport: How far you go depends on how often you switch. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13204-13209.	7.1	77
27	Why Study Noise Due to Two Level Systems: A Suggestion for Experimentalists. Journal of Low Temperature Physics, 2004, 137, 251-265.	1.4	16
28	Why study 1/f noise in Coulomb glasses. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 25-28.	0.8	6
29	Disorder dependence of phase transitions in a Coulomb glass. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 55-58.	0.8	0
30	1/fnoise in electron glasses. Physical Review B, 2003, 67, .	3.2	22
31	Generalized compressibility in a glass-forming liquid. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 125-132.	0.6	2
32	Nonequilibrium Effects in Coulomb Glasses. Physica Status Solidi (B): Basic Research, 2002, 230, 47-54.	1.5	5
33	Slow dynamics in glassy systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 1209-1223.	0.6	3
34	Time-Dependent Development of the Coulomb Gap. Physical Review Letters, 1999, 82, 4074-4077.	7.8	79
35	First-order pre-melting transition of vortex lattices. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1001-1010.	0.6	11
36	Critical behavior of the Coulomb glass. Physical Review Letters, 1993, 71, 3335-3338.	7.8	53

#	Article	IF	CITATIONS
37	Thermal conductivity and specific heat of glasses. Physical Review B, 1987, 36, 7620-7624.	3.2	97