
## Nadim Darwish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5537419/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Electrostatic catalysis of a Diels–Alder reaction. Nature, 2016, 531, 88-91.                                                                                                                                                    | 13.7 | 596       |
| 2  | Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. Chemical Society Reviews, 2018, 47, 5146-5164.                                            | 18.7 | 207       |
| 3  | Observation of Electrochemically Controlled Quantum Interference in a Single Anthraquinoneâ€Based<br>Norbornylogous Bridge Molecule. Angewandte Chemie - International Edition, 2012, 51, 3203-3206.                            | 7.2  | 150       |
| 4  | Multi-Responsive Photo- and Chemo-Electrical Single-Molecule Switches. Nano Letters, 2014, 14,<br>7064-7070.                                                                                                                    | 4.5  | 134       |
| 5  | Electrochemical and Electrostatic Cleavage of Alkoxyamines. Journal of the American Chemical Society, 2018, 140, 766-774.                                                                                                       | 6.6  | 129       |
| 6  | Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). Chemistry of<br>Materials, 2016, 28, 6080-6088.                                                                                                   | 3.2  | 96        |
| 7  | Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nature<br>Communications, 2017, 8, 15056.                                                                                                   | 5.8  | 93        |
| 8  | Distance-Dependent Electron Transfer at Passivated Electrodes Decorated by Gold Nanoparticles.<br>Analytical Chemistry, 2013, 85, 1073-1080.                                                                                    | 3.2  | 91        |
| 9  | Importance of the Indium Tin Oxide Substrate on the Quality of Self-Assembled Monolayers Formed from Organophosphonic Acids. Langmuir, 2011, 27, 2545-2552.                                                                     | 1.6  | 73        |
| 10 | The corona of a surface bubble promotes electrochemical reactions. Nature Communications, 2020, 11, 6323.                                                                                                                       | 5.8  | 72        |
| 11 | Chemically and Mechanically Controlled Single-Molecule Switches Using Spiropyrans. ACS Applied<br>Materials & Interfaces, 2019, 11, 36886-36894.                                                                                | 4.0  | 69        |
| 12 | Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. Nature<br>Communications, 2017, 8, 2066.                                                                                                     | 5.8  | 68        |
| 13 | Single Molecular Switches: Electrochemical Gating of a Single Anthraquinone-Based<br>Norbornylogous Bridge Molecule. Journal of Physical Chemistry C, 2012, 116, 21093-21097.                                                   | 1.5  | 66        |
| 14 | Studies on the Effect of Solvents on Self-Assembled Monolayers Formed from Organophosphonic<br>Acids on Indium Tin Oxide. Langmuir, 2012, 28, 9487-9495.                                                                        | 1.6  | 64        |
| 15 | TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical. Journal of the American Chemical Society, 2016, 138, 9611-9619. | 6.6  | 64        |
| 16 | The rise of selfâ€assembled monolayers for fabricating electrochemical biosensors—an interfacial perspective. Chemical Record, 2012, 12, 92-105.                                                                                | 2.9  | 62        |
| 17 | Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and<br>Silicon Electrodes. Journal of the American Chemical Society, 2019, 141, 14788-14797.                                           | 6.6  | 62        |
| 18 | Highly Conductive Single-Molecule Wires with Controlled Orientation by Coordination of<br>Metalloporphyrins. Nano Letters, 2014, 14, 4751-4756.                                                                                 | 4.5  | 48        |

NADIM DARWISH

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Electrochemistry on Tribocharged Polymers Is Governed by the Stability of Surface Charges Rather than Charging Magnitude. Journal of the American Chemical Society, 2019, 141, 5863-5870.                  | 6.6 | 47        |
| 20 | Surface-Bound Molecular Rulers for Probing the Electrical Double Layer. Journal of the American Chemical Society, 2012, 134, 7539-7544.                                                                    | 6.6 | 40        |
| 21 | Probing the Effect of the Solution Environment around Redox-Active Moieties Using Rigid<br>Anthraquinone Terminated Molecular Rulers. Journal of the American Chemical Society, 2012, 134,<br>18401-18409. | 6.6 | 40        |
| 22 | Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire. Journal of the American Chemical Society, 2019, 141, 240-250.                             | 6.6 | 39        |
| 23 | Harnessing silicon facet-dependent conductivity to enhance the direct-current produced by a sliding<br>Schottky diode triboelectric nanogenerator. Nano Energy, 2020, 78, 105210.                          | 8.2 | 37        |
| 24 | Strategies To Achieve Control over the Surface Ratio of Two Different Components on Modified Electrodes Using Aryldiazonium Salts. Langmuir, 2016, 32, 2509-2517.                                          | 1.6 | 36        |
| 25 | The spontaneous formation of single-molecule junctions via terminal alkynes. Nanotechnology, 2015, 26, 381001.                                                                                             | 1.3 | 35        |
| 26 | Switching of Current Rectification Ratios within a Single Nanocrystal by Facet-Resolved Electrical Wiring. ACS Nano, 2018, 12, 8071-8080.                                                                  | 7.3 | 34        |
| 27 | Fineâ€Tuning of Singleâ€Molecule Conductance by Tweaking Both Electronic Structure and Conformation of Side Substituents. Chemistry - A European Journal, 2015, 21, 7716-7720.                             | 1.7 | 33        |
| 28 | The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. Electrochimica Acta, 2015, 186, 216-222.                                      | 2.6 | 33        |
| 29 | Experimental Evidence of Long-Lived Electric Fields of Ionic Liquid Bilayers. Journal of the American Chemical Society, 2021, 143, 17431-17440.                                                            | 6.6 | 31        |
| 30 | Surface-Bound Norbornylogous Bridges as Molecular Rulers for Investigating Interfacial<br>Electrochemistry and as Single Molecule Switches. Accounts of Chemical Research, 2014, 47, 385-395.              | 7.6 | 30        |
| 31 | Spontaneous S–Si bonding of alkanethiols to Si(111)–H: towards Si–molecule–Si circuits. Chemical<br>Science, 2020, 11, 5246-5256.                                                                          | 3.7 | 30        |
| 32 | Reversible potential-induced structural changes of alkanethiol monolayers on gold surfaces.<br>Electrochemistry Communications, 2011, 13, 387-390.                                                         | 2.3 | 29        |
| 33 | Tuning the electrical conductance of metalloporphyrin supramolecular wires. Scientific Reports, 2016, 6, 37352.                                                                                            | 1.6 | 27        |
| 34 | The Effect of Interfacial Design on the Electrochemical Detection of DNA and MicroRNA Using<br>Methylene Blue at Lowâ€Đensity DNA Films. ChemElectroChem, 2014, 1, 165-171.                                | 1.7 | 26        |
| 35 | Spatiotemporal Control of Electrochemiluminescence Guided by a Visible Light Stimulus. Cell Reports<br>Physical Science, 2020, 1, 100107.                                                                  | 2.8 | 26        |
| 36 | Nanocrystal Inks: Photoelectrochemical Printing of Cu <sub>2</sub> O Nanocrystals on Silicon with 2D Control on Polyhedral Shapes. Advanced Functional Materials, 2018, 28, 1804791.                       | 7.8 | 24        |

NADIM DARWISH

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of the Antifouling Properties of Phenyl Phosphorylcholineâ€Based Modified Gold<br>Surfaces. Electroanalysis, 2014, 26, 1471-1480.                                                                                      | 1.5 | 23        |
| 38 | Impermeable Graphene Oxide Protects Silicon from Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 38799-38807.                                                                                                               | 4.0 | 23        |
| 39 | Covalent Linkages of Molecules and Proteins to Si–H Surfaces Formed by Disulfide Reduction.<br>Langmuir, 2020, 36, 14999-15009.                                                                                                      | 1.6 | 22        |
| 40 | Vortex fluidic mediated transformation of graphite into highly conducting graphene scrolls.<br>Nanoscale Advances, 2019, 1, 2495-2501.                                                                                               | 2.2 | 21        |
| 41 | Reduced graphene oxide–silicon interface involving direct Si–O bonding as a conductive and mechanical stable ohmic contact. Chemical Communications, 2020, 56, 6209-6212.                                                            | 2.2 | 21        |
| 42 | Building Nanoscale Molecular Wires Exploiting Electrocatalytic Interactions. Electrochimica Acta, 2015, 179, 611-617.                                                                                                                | 2.6 | 19        |
| 43 | Oxidative acetylenic coupling reactions as a surface chemistry tool. Physical Chemistry Chemical Physics, 2011, 13, 15624.                                                                                                           | 1.3 | 16        |
| 44 | Redox-Active Monolayers in Mesoporous Silicon. Journal of Physical Chemistry C, 2012, 116,<br>16080-16088.                                                                                                                           | 1.5 | 16        |
| 45 | Hydrogen evolution during the electrodeposition of gold nanoparticles at Si(100) photoelectrodes impairs the analysis of current-time transients. Electrochimica Acta, 2017, 247, 200-206.                                           | 2.6 | 16        |
| 46 | Single-Electrode Electrochemistry: Chemically Engineering Surface Adhesion and Hardness To<br>Maximize Redox Work Extracted from Tribocharged Silicon. ACS Applied Nano Materials, 2019, 2,<br>7230-7236.                            | 2.4 | 16        |
| 47 | Electroactive Selfâ€Assembled Monolayers of Unique Geometric Structures by Using Rigid<br>Norbornylogous Bridges. Chemistry - A European Journal, 2012, 18, 283-292.                                                                 | 1.7 | 15        |
| 48 | Ultrasonic Generation of Thiyl Radicals: A General Method of Rapidly Connecting Molecules to a<br>Range of Electrodes for Electrochemical and Molecular Electronics Applications. ACS Sensors, 2021,<br>6, 573-580.                  | 4.0 | 15        |
| 49 | Common Background Signals in Voltammograms of Crystalline Silicon Electrodes are Reversible<br>Silica–Silicon Redox Chemistry at Highly Conductive Surface Sites. Journal of the American Chemical<br>Society, 2021, 143, 1267-1272. | 6.6 | 15        |
| 50 | Sliding silicon-based Schottky diodes: Maximizing triboelectricity with surface chemistry. Nano<br>Energy, 2022, 93, 106861.                                                                                                         | 8.2 | 15        |
| 51 | The Influence of Organicâ€Film Morphology on the Efficient Electron Transfer at Passivated<br>Polymerâ€Modified Electrodes to which Nanoparticles are Attached. ChemPhysChem, 2013, 14, 2190-2197.                                   | 1.0 | 14        |
| 52 | Switchable Interfaces: Redox Monolayers on Si(100) by Electrochemical Trapping of Alcohol<br>Nucleophiles. Surfaces, 2018, 1, 3-11.                                                                                                  | 1.0 | 14        |
| 53 | Spontaneous Grafting of OH-Terminated Molecules on Siâ                                                                                                                                                                               | 1.0 | 13        |
| 54 | Nanoscale Silicon Oxide Reduces Electron Transfer Kinetics of Surface-Bound Ferrocene Monolayers on Silicon. Journal of Physical Chemistry C, 2021, 125, 27763-27770.                                                                | 1.5 | 12        |

NADIM DARWISH

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Absence of a Relationship between Surface Conductivity and Electrochemical Rates: Redox-Active<br>Monolayers on Si(211), Si(111), and Si(110). Journal of Physical Chemistry C, 2021, 125, 18197-18203. | 1.5  | 11        |
| 56 | Nucleic-acid recognition interfaces: how the greater ability of RNA duplexes to bend towards the surface influences electrochemical sensor performance. Chemical Communications, 2015, 51, 16526-16529. | 2.2  | 10        |
| 57 | Irreproducibility in the triboelectric charging of insulators: evidence of a non-monotonic charge versus contact time relationship. Physical Chemistry Chemical Physics, 2020, 22, 11671-11677.         | 1.3  | 10        |
| 58 | Memristor Arrays Formed by Reversible Formation and Breakdown of Nanoscale Silica Layers on Si–H<br>Surfaces. ACS Applied Nano Materials, 2022, 5, 6609-6617.                                           | 2.4  | 10        |
| 59 | Static Electrification of Plastics under Friction: The Position of Engineeringâ€Grade Polyethylene<br>Terephthalate in the Triboelectric Series. Advanced Engineering Materials, 2020, 22, 1901201.     | 1.6  | 9         |
| 60 | Electrochemically fabricated molecule–electrode contacts for molecular electronics. Current<br>Opinion in Electrochemistry, 2022, 34, 101019.                                                           | 2.5  | 9         |
| 61 | Silicon â^ single molecule â^ silicon circuits. Chemical Science, 2021, 12, 15870-15881.                                                                                                                | 3.7  | 7         |
| 62 | Effect of Electric Fields on Silicon-Based Monolayers. Langmuir, 2022, 38, 2986-2992.                                                                                                                   | 1.6  | 7         |
| 63 | On-Surface Azide–Alkyne Cycloaddition Reaction: Does It Click with Ruthenium Catalysts?. Langmuir, 2022, 38, 5532-5541.                                                                                 | 1.6  | 7         |
| 64 | Continuous flow fabrication of green graphene oxide in aqueous hydrogen peroxide. Nanoscale<br>Advances, 2022, 4, 3121-3130.                                                                            | 2.2  | 7         |
| 65 | Ultra-Small Fatty Acid-Stabilized Magnetite Nanocolloids Synthesized by <i>In Situ</i> Hydrolytic<br>Precipitation. Journal of Nanomaterials, 2015, 2015, 1-11.                                         | 1.5  | 6         |
| 66 | High shear <i>in situ</i> exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. Nanoscale Advances, 2021, 3, 5785-5792.                                       | 2.2  | 6         |
| 67 | Decoloration rates of a photomerocyanine dye as a visual probe into hydrogen bonding interactions.<br>Chemical Communications, 2015, 51, 4815-4818.                                                     | 2.2  | 5         |
| 68 | Chemical mechanisms, one molecule at a time. Nature Nanotechnology, 2021, 16, 1176-1177.                                                                                                                | 15.6 | 4         |
| 69 | Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors.<br>Surfaces, 2022, 5, 218-227.                                                                            | 1.0  | 4         |
| 70 | Thickness-Dependent Seebeck Coefficient in Hybrid 2-Dimensional layers. , 2021, , .                                                                                                                     |      | 3         |
| 71 | Electro-polymerization rates of diazonium salts are dependent on the crystal orientation of the surface. Journal of Colloid and Interface Science, 2022, 626, 985-994.                                  | 5.0  | 3         |
| 72 | Non-Ideal Cyclic Voltammetry of Redox Monolayers on Silicon Electrodes: Peak Splitting is Caused by<br>Heterogeneous Photocurrents and Not by Molecular Disorder. Langmuir, 2022, 38, 743-750.          | 1.6  | 1         |

| #  | Article                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Spontaneous Formation of Diazonium Salts Thin Films on Silicon Electrodes. ECS Meeting Abstracts, 2019, , . | 0.0 | 0         |