List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553702/publications.pdf Version: 2024-02-01

NAN HUANC

#	Article	IF	CITATIONS
1	Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano, 2013, 7, 6244-6257.	14.6	309
2	Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells. Langmuir, 2013, 29, 9138-9148.	3.5	183
3	Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials, 2015, 63, 80-92.	11.4	162
4	Multifunctional Coating Based on Hyaluronic Acid and Dopamine Conjugate for Potential Application on Surface Modification of Cardiovascular Implanted Devices. ACS Applied Materials & Interfaces, 2016, 8, 109-121.	8.0	132
5	Immobilization of heparin/poly-l-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomaterialia, 2014, 10, 1940-1954.	8.3	126
6	Mussel-Inspired One-Step Adherent Coating Rich in Amine Groups for Covalent Immobilization of Heparin: Hemocompatibility, Growth Behaviors of Vascular Cells, and Tissue Response. ACS Applied Materials & Interfaces, 2014, 6, 14608-14620.	8.0	115
7	Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomaterialia, 2014, 10, 5213-5223.	8.3	114
8	The role of heparin binding surfaces in the direction of endothelial and smooth muscle cell fate and re-endothelialization. Biomaterials, 2012, 33, 6615-6625.	11.4	113
9	Mussel-inspired dopamine-Cull coatings for sustained in situ generation of nitric oxide for prevention of stent thrombosis and restenosis. Biomaterials, 2019, 194, 117-129.	11.4	110
10	Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials, 2019, 207, 10-22.	11.4	106
11	Assembly of Metal–Phenolic/Catecholamine Networks for Synergistically Anti-Inflammatory, Antimicrobial, and Anticoagulant Coatings. ACS Applied Materials & Interfaces, 2018, 10, 40844-40853.	8.0	104
12	Mussel-inspired catalytic selenocystamine-dopamine coatings for long-term generation of therapeutic gas on cardiovascular stents. Biomaterials, 2018, 178, 1-10.	11.4	99
13	Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proceedings of the United States of America, 2020, 117, 16127-16137.	7.1	99
14	Direct thrombin inhibitor-bivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices. Biomaterials, 2012, 33, 7959-7971.	11.4	94
15	Multidentate Polyethylene Glycol Modified Gold Nanorods for in Vivo Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2014, 6, 5657-5668.	8.0	94
16	Controlling Molecular Weight of Hyaluronic Acid Conjugated on Amine-rich Surface: Toward Better Multifunctional Biomaterials for Cardiovascular Implants. ACS Applied Materials & Interfaces, 2017, 9, 30343-30358.	8.0	83
17	Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy. Research, 2020, 2020, 9203906.	5.7	81
18	Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. Corrosion Science, 2016, 104, 277-289.	6.6	79

#	Article	IF	CITATIONS
19	The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomaterialia, 2019, 94, 33-43.	8.3	78
20	A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids and Surfaces B: Biointerfaces, 2014, 113, 125-133.	5.0	65
21	Metal-Phenolic Surfaces for Generating Therapeutic Nitric Oxide Gas. Chemistry of Materials, 2018, 30, 5220-5226.	6.7	64
22	Application Of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion And Surface Biofunctionalization. ACS Applied Materials & amp; Interfaces, 2015, 7, 24510-24522.	8.0	61
23	Mimicking the Nitric Oxideâ€Releasing and Glycocalyx Functions of Endothelium on Vascular Stent Surfaces. Advanced Science, 2020, 7, 2002330.	11.2	59
24	A facile metal–phenolic–amine strategy for dual-functionalization of blood-contacting devices with antibacterial and anticoagulant properties. Materials Chemistry Frontiers, 2019, 3, 265-275.	5.9	55
25	Mussel-inspired "built-up―surface chemistry for combining nitric oxide catalytic and vascular cell selective properties. Biomaterials, 2020, 241, 119904.	11.4	54
26	A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nature Communications, 2021, 12, 7079.	12.8	54
27	Directing Vascular Cell Selectivity and Hemocompatibility on Patterned Platforms Featuring Variable Topographic Geometry and Size. ACS Applied Materials & Interfaces, 2014, 6, 12062-12070.	8.0	52
28	A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Materials Science and Engineering C, 2014, 38, 235-243.	7.3	52
29	Polydopamine Modified TiO ₂ Nanotube Arrays for Long-Term Controlled Elution of Bivalirudin and Improved Hemocompatibility. ACS Applied Materials & Interfaces, 2018, 10, 7649-7660.	8.0	52
30	Synergetic coordination and catecholamine chemistry for catalytic generation of nitric oxide on vascular stents. NPG Asia Materials, 2018, 10, 482-496.	7.9	50
31	"Mixed-charge Self-Assembled Monolayers―as A Facile Method to Design pH-induced Aggregation of Large Gold Nanoparticles for Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2014, 6, 18930-18937.	8.0	49
32	Poly-dopamine, poly-levodopa, and poly-norepinephrine coatings: Comparison of physico-chemical and biological properties with focus on the application for blood-contacting devices. Bioactive Materials, 2021, 6, 285-296.	15.6	49
33	Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents. Biomaterials, 2021, 269, 120626.	11.4	47
34	Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography. Acta Biomaterialia, 2015, 15, 150-163.	8.3	45
35	Gallic Acid Tailoring Surface Functionalities of Plasma-Polymerized Allylamine-Coated 316L SS to Selectively Direct Vascular Endothelial and Smooth Muscle Cell Fate for Enhanced Endothelialization. ACS Applied Materials & Interfaces, 2014, 6, 2647-2656.	8.0	44
36	Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell. Colloids and Surfaces B: Biointerfaces, 2014, 116, 553-560.	5.0	43

#	Article	IF	CITATIONS
37	Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility. Colloids and Surfaces B: Biointerfaces, 2015, 128, 201-210.	5.0	43
38	Multifunctional coatings that mimic the endothelium: surface bound active heparin nanoparticles with <i>in situ</i> generation of nitric oxide from nitrosothiols. Journal of Materials Chemistry B, 2018, 6, 5582-5595.	5.8	43
39	Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface. Colloids and Surfaces B: Biointerfaces, 2015, 126, 70-79.	5.0	42
40	Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Materials Science and Engineering C, 2020, 113, 110983.	7.3	41
41	Pulsedâ€Plasma Polymeric Allylamine Thin Films. Plasma Processes and Polymers, 2009, 6, 498-505.	3.0	39
42	Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomaterialia, 2017, 50, 546-555.	8.3	39
43	Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. International Journal of Energy Production and Management, 2015, 2, 59-69.	3.7	37
44	Engineering Cardiovascular Implant Surfaces to Create a Vascular Endothelial Growth Microenvironment. Biotechnology Journal, 2017, 12, 1600401.	3.5	37
45	Metal-catechol-(amine) networks for surface synergistic catalytic modiï¬cation: Therapeutic gas generation and biomolecule grafting. Biomaterials, 2020, 248, 119981.	11.4	37
46	From surface to bulk modification: Plasma polymerization of amine-bearing coating by synergic strategy of biomolecule grafting and nitric oxide loading. Bioactive Materials, 2020, 5, 17-25.	15.6	37
47	Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization. Materials Science and Engineering C, 2016, 60, 219-229.	7.3	35
48	Crystallization and thermal properties of PLLA comb polymer. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 589-598.	2.1	34
49	Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO ₂ nanotubes for improved vascular biocompatibility. Journal of Materials Chemistry B, 2014, 2, 6767-6778.	5.8	34
50	The effect of ligand composition on the inÂvivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials, 2013, 34, 8370-8381.	11.4	33
51	Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization. Colloids and Surfaces B: Biointerfaces, 2016, 145, 410-419.	5.0	33
52	Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization. Colloids and Surfaces B: Biointerfaces, 2016, 144, 90-98.	5.0	33
53	Mechanical response of cardiovascular stents under vascular dynamic bending. BioMedical Engineering OnLine, 2016, 15, 21.	2.7	33
54	A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomaterials Science and Engineering, 2018, 4, 1568-1579.	5.2	32

#	Article	IF	CITATIONS
55	Copper-Incorporated Collagen/Catechol Film for in Situ Generation of Nitric Oxide. ACS Biomaterials Science and Engineering, 2015, 1, 771-779.	5.2	30
56	A Versatile Surface Bioengineering Strategy Based on Mussel-Inspired and Bioclickable Peptide Mimic. Research, 2020, 2020, 7236946.	5.7	29
57	Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification. Journal of Applied Polymer Science, 2012, 124, 2641-2648.	2.6	28
58	Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film. RSC Advances, 2016, 6, 15247-15259.	3.6	28
59	Improvement of corrosion resistance and biocompatibility of biodegradable metallic vascular stent via plasma allylamine polymerized coating. Materials and Design, 2016, 96, 341-349.	7.0	28
60	In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Science China Materials, 2018, 61, 501-515.	6.3	28
61	Co-culture of endothelial cells and patterned smooth muscle cells on titanium: Construction with high density of endothelial cells and low density of smooth muscle cells. Biochemical and Biophysical Research Communications, 2015, 456, 555-561.	2.1	27
62	Surface-Degradable Drug-Eluting Stent with Anticoagulation, Antiproliferation, and Endothelialization Functions. Biomolecules, 2019, 9, 69.	4.0	27
63	Mg–Phenolic Network Strategy for Enhancing Corrosion Resistance and Osteocompatibility of Degradable Magnesium Alloys. ACS Omega, 2019, 4, 21931-21944.	3.5	27
64	Preparation of a biomimetic ECM surface on cardiovascular biomaterials via a novel layer-by-layer decellularization for better biocompatibility. Materials Science and Engineering C, 2019, 96, 509-521.	7.3	27
65	Efficient Preparation of Enantiopure D-Phenylalanine through Asymmetric Resolution Using Immobilized Phenylalanine Ammonia-Lyase from Rhodotorula glutinis JN-1 in a Recirculating Packed-Bed Reactor. PLoS ONE, 2014, 9, e108586.	2.5	27
66	Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements. Scientific Reports, 2016, 6, 20063.	3.3	26
67	Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and Type IV collagen. International Journal of Energy Production and Management, 2016, 3, 149-157.	3.7	26
68	Nitric oxide-generating compound and bio-clickable peptide mimic for synergistically tailoring surface anti-thrombogenic and anti-microbial dual-functions. Bioactive Materials, 2021, 6, 1618-1627.	15.6	26
69	Endotheliumâ€Mimicking Surface Combats Thrombosis and Biofouling via Synergistic Long―and Shortâ€Distance Defense Strategy. Small, 2021, 17, e2100729.	10.0	26
70	Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioactive Materials, 2021, 6, 45-54.	15.6	25
71	Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents. Bioactive Materials, 2021, 6, 4786-4800.	15.6	25
72	Contractive Polymeric Complex Micelles as Thermo ensitive Nanopumps. Macromolecular Rapid Communications, 2008, 29, 1410-1414.	3.9	24

#	Article	IF	CITATIONS
73	Design and construction of TiO ₂ nanotubes in microarray using twoâ€step anodic oxidation for application of cardiovascular implanted devices. Micro and Nano Letters, 2015, 10, 287-291.	1.3	24
74	Constructing bio-functional layers of hyaluronan and type IV collagen on titanium surface for improving endothelialization. Journal of Materials Science, 2015, 50, 3226-3236.	3.7	24
75	hiPSC Modeling of Lineage-Specific Smooth Muscle Cell Defects Caused by <i>TGFBR1</i> ^{ <i>A230T</i>} Variant, and Its Therapeutic Implications for Loeys-Dietz Syndrome. Circulation, 2021, 144, 1145-1159.	1.6	24
76	Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Advances, 2016, 6, 17188-17195.	3.6	23
77	The Effects of Static and Dynamic Loading on Biodegradable Magnesium Pins In Vitro and In Vivo. Scientific Reports, 2017, 7, 14710.	3.3	23
78	Heparin/polyâ€lâ€lysine nanoplatform with growth factor delivery for surface modification of cardiovascular stents: The influence of vascular endothelial growth factor loading. Journal of Biomedical Materials Research - Part A, 2020, 108, 1295-1304.	4.0	23
79	Construction of Polyfunctional Coatings Assisted by Gallic Acid to Facilitate Co-Immobilization of Diverse Biomolecules. ACS Applied Materials & Interfaces, 2013, 5, 10495-10501.	8.0	22
80	Effect of micropatterned TiO2 nanotubes thin film on the deposition of endothelial extracellular matrix: For the purpose of enhancing surface biocompatibility. Biointerphases, 2015, 10, 04A302.	1.6	22
81	Heparin/DNA aptamer co-assembled multifunctional catecholamine coating for EPC capture and improved hemocompatibility of vascular devices. Materials Science and Engineering C, 2017, 79, 305-314.	7.3	22
82	Plant-inspired gallolamine catalytic surface chemistry for engineering an efficient nitric oxide generating coating. Acta Biomaterialia, 2018, 76, 89-98.	8.3	22
83	Biomaterials Regulating Bone Hematoma for Osteogenesis. Advanced Healthcare Materials, 2020, 9, e2000726.	7.6	22
84	Cuâ^¥-loaded polydopamine coatings with in situ nitric oxide generation function for improved hemocompatibility. International Journal of Energy Production and Management, 2020, 7, 153-160.	3.7	22
85	Recent developments in nitric oxide-releasing biomaterials for biomedical applications. Medical Gas Research, 2019, 9, 184.	2.3	22
86	Mussel-Inspired and Bioclickable Peptide Engineered Surface to Combat Thrombosis and Infection. Research, 2022, 2022, 9780879.	5.7	22
87	The effect of full/partial UV-irradiation of TiO 2 films on altering the behavior of fibrinogen and platelets. Colloids and Surfaces B: Biointerfaces, 2014, 122, 709-718.	5.0	21
88	Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film. Materials Science and Engineering C, 2016, 69, 1175-1182.	7.3	21
89	Hyaluronic Acid Nanoparticle Composite Films Confer Favorable Time-Dependent Biofunctions for Vascular Wound Healing. ACS Biomaterials Science and Engineering, 2019, 5, 1833-1848.	5.2	21
90	Reactive magnetron co-sputtering of Ti-xCuO coatings: Multifunctional interfaces for blood-contacting devices. Materials Science and Engineering C, 2020, 116, 111198.	7.3	21

#	Article	IF	CITATIONS
91	Chiral Polymeric Micelles From Electrostatic Assembly Between Achiral Porphyrins and Block Copolymers. Macromolecular Rapid Communications, 2008, 29, 214-218.	3.9	20
92	Effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 639-647.	4.9	20
93	Influence of chirality on catalytic generation of nitric oxide and platelet behavior on selenocystine immobilized TiO2 films. Colloids and Surfaces B: Biointerfaces, 2016, 145, 122-129.	5.0	20
94	The effect of anti-CD133/fucoidan bio-coatings on hemocompatibility and EPC capture. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 2066-2081.	3.5	20
95	Multifunctional Ti-xCu coatings for cardiovascular interfaces: Control of microstructure and surface chemistry. Materials Science and Engineering C, 2019, 104, 109969.	7.3	20
96	Endogenous nitric oxide-generating surfaces via polydopamine-copper coatings for preventing biofilm dispersal and promoting microbial killing. Materials Science and Engineering C, 2021, 128, 112297.	7.3	20
97	New strategies for developing cardiovascular stent surfaces with novel functions (Review). Biointerphases, 2014, 9, 029017.	1.6	19
98	Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 459-464.	5.0	19
99	Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility. Journal of Materials Science: Materials in Medicine, 2016, 27, 81.	3.6	19
100	Intelligent H2S release coating for regulating vascular remodeling. Bioactive Materials, 2021, 6, 1040-1050.	15.6	19
101	Hydrogen sulphide-releasing aspirin enhances cell capabilities of anti-oxidative lesions and anti-inflammation. Medical Gas Research, 2019, 9, 145.	2.3	19
102	Improved Hemocompatibility Guided by Pulsed Plasma Tailoring the Surface Amino Functionalities of TiO ₂ Coating for Covalent Immobilization of Heparin. Plasma Processes and Polymers, 2011, 8, 850-858.	3.0	17
103	Current status of research and application in vascular stents. Science Bulletin, 2013, 58, 4362-4370.	1.7	17
104	Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility. Materials Science and Engineering C, 2020, 108, 110487.	7.3	17
105	Platelet Adhesion and Activation on Chiral Surfaces: The Influence of Protein Adsorption. Langmuir, 2017, 33, 10402-10410.	3.5	16
106	New Approaches for Hydrogen Therapy of Various Diseases. Current Pharmaceutical Design, 2021, 27, 636-649.	1.9	16
107	Gallic acid and gallic acid-loaded coating involved in selective regulation of platelet, endothelial and smooth muscle cell fate. RSC Advances, 2014, 4, 212-221.	3.6	15
108	Effect of wafer size on the film internal stress measurement by wafer curvature method. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 93-99.	1.0	15

#	Article	IF	CITATIONS
109	Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomaterials Science and Engineering, 2019, 5, 6541-6556.	5.2	15
110	Biocompatibility studies of poly(ethylene glycol)–modified titanium for cardiovascular devices. Journal of Bioactive and Compatible Polymers, 2012, 27, 565-584.	2.1	14
111	Preparation of phospholipid-based polycarbonate urethanes for potential applications of blood-contacting implants. International Journal of Energy Production and Management, 2020, 7, 491-504.	3.7	14
112	Atorvastatin Eluting Coating for Magnesiumâ€Based Stents: Control of Degradation and Endothelialization in a Microfluidic Assay and In Vivo. Advanced Materials Technologies, 2020, 5, 1900947.	5.8	14
113	Photo-immobilized heparin micropatterns on Ti–O surface: preparation, characterization, and evaluation in vitro. Journal of Materials Science, 2011, 46, 6772-6782.	3.7	13
114	Research on corrosion behavior of A6N01S-T5 aluminum alloy welded joint for high-speed trains. Journal of Mechanical Science and Technology, 2012, 26, 1471-1476.	1.5	13
115	Multifunctional Plasma-Polymerized Film: Toward Better Anticorrosion Property, Enhanced Cellular Growth Ability, and Attenuated Inflammatory and Histological Responses. ACS Biomaterials Science and Engineering, 2015, 1, 513-524.	5.2	13
116	Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility. Colloids and Surfaces B: Biointerfaces, 2017, 155, 314-322.	5.0	13
117	Multiphoton Fabrication of Fibronectin-Functionalized Protein Micropatterns: Stiffness-Induced Maturation of Cell–Matrix Adhesions in Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 29469-29480.	8.0	13
118	Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility. Materials Science and Engineering C, 2016, 64, 236-242.	7.3	12
119	Catalytic Formation of Nitric Oxide Mediated by Ti–Cu Coatings Provides Multifunctional Interfaces for Cardiovascular Applications. Advanced Materials Interfaces, 2018, 5, 1701487.	3.7	12
120	Real-time QCM-D monitoring of endothelial cells and macrophages adhering and spreading to SEMA4D/heparin surfaces. Colloids and Surfaces B: Biointerfaces, 2018, 171, 522-529.	5.0	12
121	Magnesium ion leachables induce a conversion of contractile vascular smooth muscle cells to an inflammatory phenotype. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 988-1001.	3.4	12
122	Photofunctionalized and Drug-Loaded TiO ₂ Nanotubes with Improved Vascular Biocompatibility as a Potential Material for Polymer-Free Drug-Eluting Stents. ACS Biomaterials Science and Engineering, 2020, 6, 2038-2049.	5.2	12
123	Inspired Chemistry for a Simple but Highly Effective Immobilization of Vascular Endothelial Growth Factor on Gallic Acidâ€functionalized Plasma Polymerized Film. Plasma Processes and Polymers, 2012, 9, 718-725.	3.0	11
124	Stability research on polydopamine and immobilized albumin on 316L stainless steel. International Journal of Energy Production and Management, 2016, 3, 277-284.	3.7	11
125	Modulating the pH Activity Profiles of Phenylalanine Ammonia Lyase from Anabaena variabilis by Modification of Center-Near Surface Residues. Applied Biochemistry and Biotechnology, 2017, 183, 699-711.	2.9	11
126	One-Pot but Two-Step Vapor-Based Amine- and Fluorine-Bearing Dual-Layer Coating for Improving Anticorrosion and Biocompatibility of Magnesium Alloy. ACS Biomaterials Science and Engineering, 2019, 5, 4331-4340.	5.2	11

#	Article	IF	CITATIONS
127	The co-deposition coating of collagen IV and laminin on hyaluronic acid pattern for better biocompatibility on cardiovascular biomaterials. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111307.	5.0	11
128	Theoretical calculation and experimental study of influence of oxygen vacancy on the electronic structure and hemocompatibility of rutile TiO2. Science in China Series D: Earth Sciences, 2009, 52, 2742-2748.	0.9	10
129	Layer-by-layer self-assembled laminin/fucoidan films: towards better hemocompatibility and endothelialization. RSC Advances, 2016, 6, 56048-56055.	3.6	10
130	Preferential sensing and response to microenvironment stiffness of human dermal fibroblast cultured on protein micropatterns fabricated by 3D multiphoton biofabrication. Scientific Reports, 2017, 7, 12402.	3.3	10
131	Polydopamine-Modified Copper-Doped Titanium Dioxide Nanotube Arrays for Copper-Catalyzed Controlled Endogenous Nitric Oxide Release and Improved Re-Endothelialization. ACS Applied Bio Materials, 2020, 3, 3123-3136.	4.6	10
132	The protective effect of hydrogen-rich water on rats with type 2 diabetes mellitus. Molecular and Cellular Biochemistry, 2021, 476, 3089-3097.	3.1	10
133	Corrosion Resistance of Ti-O Film Modified 316L Stainless Steel Coronary Stents In Vitro. Journal of Materials Engineering and Performance, 2012, 21, 424-428.	2.5	9
134	An extracellular matrix–like surface modification on titanium improves implant endothelialization through the reduction of platelet adhesion and the capture of endothelial progenitor cells. Journal of Bioactive and Compatible Polymers, 2013, 28, 33-49.	2.1	9
135	Carbon-Doped Titanium Oxide Films by DC Reactive Magnetron Sputtering Using CO2 and O2 as Reactive Gas. Acta Metallurgica Sinica (English Letters), 2014, 27, 239-244.	2.9	9
136	Development of nitric oxide catalytic coatings by conjugating 3,3-disulfodipropionic acid and 3,3-diselenodipropionic acid for improving hemocompatibility. Biointerphases, 2015, 10, 04A303.	1.6	9
137	Analysis of Flow Field in Mechanical Aortic Bileaflet Heart Valves Using Finite Volume Method. Journal of Medical and Biological Engineering, 2016, 36, 110-120.	1.8	9
138	Mechanical Property of TiO ₂ Nano-Tubes Surface Based on the Investigation of Residual Stress, Tensile Force and Fluid Flow Shear Stress: For Potential Application of Cardiovascular Devices. Journal of Nanoscience and Nanotechnology, 2018, 18, 798-804.	0.9	9
139	An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies. Biomaterials, 2021, 275, 120911.	11.4	9
140	Fabrication of microâ€patterned titanium dioxide nanotubes thin film and its biocompatibility. Journal of Engineering, 2014, 2014, 665-671.	1.1	9
141	The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. Biosurface and Biotribology, 2022, 8, 1-14.	1.5	9
142	Micro/Nanoâ€Structured Metal–Organic/Inorganic Hybrid Coatings on Biodegradable Zn for Osteogenic and Biocompatible Improvement. Advanced Materials Interfaces, 2022, 9, .	3.7	9
143	Facile conjugation of heparin onto titanium surfaces via dopamine inspired coatings for improving blood compatibility. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 832-840.	1.0	8
144	Constructing Biomimic Catalytic Coating with Controlled Nitric Oxide Release Properties by Immobilizing 3,3-Diselenodipropionic Acid on Plasma Polymerized Allylamine Film. Plasma Processes and Polymers, 2014, 11, 952-960.	3.0	8

#	Article	IF	CITATIONS
145	An Albumin Biopassive Polyallylamine Film with Improved Blood Compatibility for Metal Devices. Polymers, 2019, 11, 734.	4.5	8
146	Phospholipid-based multifunctional coating via layer-by-layer self-assembly for biomedical applications. Materials Science and Engineering C, 2020, 116, 111237.	7.3	8
147	High-Power Pulsed Magnetron Sputtering Glow Plasma in Argon Gas and Pulsed Ion Extraction. IEEE Transactions on Plasma Science, 2010, 38, 3016-3027.	1.3	7
148	Micropatterned immobilization of membrane-mimicking polymer and peptides for regulation of cell behaviors <i>in vitro</i> . RSC Advances, 2018, 8, 20836-20850.	3.6	7
149	Inhibition of bacterial adherence on the surface of biliary stent materials modified with chitosan. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 795-798.	1.0	6
150	Dynamic curvature control of rolled-up metal nanomembranes activated by magnesium. Journal of Materials Chemistry, 2012, 22, 12983.	6.7	6
151	Microstructure and Platelet Adhesion Behavior of Titanium Oxide Films Synthesized by Reactive High-Power Pulse Magnetron Sputtering. IEEE Transactions on Plasma Science, 2013, 41, 1837-1843.	1.3	6
152	Biomimetic GelMPC Micropatterns on Titanium and Their Effects on Platelets and Endothelialization. Advanced Engineering Materials, 2018, 20, 1800624.	3.5	6
153	Effects of biomimetic micropattern on titanium deposited with PDA/Cu and nitric oxide release on behaviors of ECs. Journal of Materials Research, 2019, 34, 2037-2046.	2.6	6
154	Biomimetic tubular scaffold with heparin conjugation for rapid degradation in in situ regeneration of a small diameter neoartery. Biomaterials, 2021, 274, 120874.	11.4	6
155	Mechanical formula for the plastic limit pressure of stent during expansion. Acta Mechanica Sinica/Lixue Xuebao, 2009, 25, 795-801.	3.4	5
156	Multifunctional mussel-inspired copolymerized epigallocatechin gallate (EGCG)/arginine coating: the potential as an ad-layer for vascular materials. International Journal of Energy Production and Management, 2016, 3, 247-255.	3.7	5
157	Multiphoton 3D Microprinting of Protein Micropatterns with Spatially Controlled Heterogeneity – A Platform for Single Cell Matrix Niche Studies. Advanced Biology, 2018, 2, 1800053.	3.0	5
158	Ti–Cu Coatings Deposited by a Combination of HiPIMS and DC Magnetron Sputtering: The Role of Vacuum Annealing on Cu Diffusion, Microstructure, and Corrosion Resistance. Coatings, 2020, 10, 1064.	2.6	5
159	Self-protonating, plasma polymerized, superimposed multi-layered biomolecule nanoreservoir as blood-contacting surfaces. Chemical Engineering Journal, 2021, 410, 128313.	12.7	5
160	Antithrombogenic investigation and biological behavior of cultured human umbilical vein endothelial cells on Ti-O film. Science in China Series D: Earth Sciences, 2006, 49, 20-28.	0.9	4
161	In vitro blood compatibility of polyethylene terephthalate with covalently bounded hirudin on surface. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 950-954.	1.0	4
162	Chirality-mediated enhancement of nitric oxide release and regulation of endothelial cells behaviors by cystine immobilization on Ti–O films. RSC Advances, 2017, 7, 27272-27280.	3.6	4

#	Article	IF	CITATIONS
163	Cell-friendly photo-functionalized TiO2 nano-micro-honeycombs for selectively preventing bacteria and platelet adhesion. Materials Science and Engineering C, 2021, 123, 111996.	7.3	4
164	Wear Mechanisms During Sliding of Ti64 Balls Against Bare and HFCVD Polycrystalline-Diamond-Coated WC-Co Exchangeable Inserts. IEEE Transactions on Plasma Science, 2012, 40, 1829-1836.	1.3	3
165	Wear and Failure Process of TiN and DLC Films Monitored With Open Circuit Potential. IEEE Transactions on Plasma Science, 2013, 41, 1844-1849.	1.3	3
166	Effects of Adsorption of Albumin and Gamma-Globulin on the Tribological Performance of a Diamond-Like Carbon Film. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1103-1108.	1.0	3
167	Photolithography-Mediated Area-Selective Immobilization of Biomolecules on Polydopamine Coating. Langmuir, 2019, 35, 7175-7179.	3.5	3
168	Lidocaine-eluting endotracheal tube effectively attenuates intubation related airway response. Annals of Translational Medicine, 2021, 9, 871-871.	1.7	3
169	Highly Efficient Photocatalytic Antiâ€Bacterial Ag Doped Titanium Dioxide Nanofilms with Combination of Reactive Oxygen Species and Ag Ions Releasing for Application of Vascular Implants. Advanced Materials Interfaces, 2021, 8, 2100892.	3.7	3
170	Biomedical Applications of Plasma and Ion Beam Processing. Journal of the Vacuum Society of Japan, 2008, 51, 81-92.	0.3	3
171	Immobilizing collagen type I to TiO2 film for improvement of biocompatibility. Frontiers of Materials Science in China, 2008, 2, 276-280.	0.5	2
172	Preparation of micro-patterned surfaces of Si-N-O films and their influence on adhesion behavior of endothelial cells. Science China Technological Sciences, 2010, 53, 257-263.	4.0	2
173	Responsive surface charge transfer doping effect of reductive bio-molecules (glucose, fucoidan, and) Tj ETQq1 1 4109-4116.	0.784314 3.7	rgBT /Over 2
174	Real-Time Characterization of Fibrinogen Interaction with Modified Titanium Dioxide Film by Quartz Crystal Microbalance with Dissipation. Chinese Journal of Chemical Physics, 2014, 27, 355-360.	1.3	2
175	Microstructure and mechanical properties of Cr films deposited with different peak powers by high-power impulse magnetron sputtering. Rare Metals, 2023, 42, 327-335.	7.1	2
176	Improve matching ability of stent and balloon via preparing nano-structure by low-temperature plasma treatment. Integrated Ferroelectrics, 2017, 179, 24-30.	0.7	2
177	Preparation of sulfonated silk fibroin for anti-coagulation material. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1701-1715.	3.5	2
178	Study of functional drug-eluting stent in promoting endothelialization and antiproliferation. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 244-260.	3.5	2
179	Comparison of in Vascular Bioreactors and In Vivo Models of Degradation and Cellular Response of Mg–Zn–Mn Stents. Annals of Biomedical Engineering, 2021, 49, 1551-1560.	2.5	2
180	Enhanced Hemocompatibility of Silver Nanoparticles Using the Photocatalytic Properties of Titanium Dioxide. Frontiers in Bioengineering and Biotechnology, 2022, 10, 855471.	4.1	2

#	Article	IF	CITATIONS
181	Characterization of Ti-Cu Films Deposited by HPPMS and Effect on NO Catalytic Release and Platelet Adhesion Behavior. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 505-511.	1.0	1
182	Improved corrosion resistance and biocompatibility of biomedical magnesium alloy with polypeptide TK14 functionalised hydrophobic coating. Biosurface and Biotribology, 2021, 7, 12-22.	1.5	1
183	Copperâ€mediated polyurethane materials with enzymeâ€like catalysis for biocompatibility improvement in blood environments. Biosurface and Biotribology, 2021, 7, 30-41.	1.5	1
184	Bioinspired phospholipid polymer for improvement of biofouling on titanium alloy substrate. Transactions of the Materials Research Society of Japan, 2011, 36, 573-576.	0.2	1
185	Effect of micro-characterization on thrombus formation ability of TiO2 film. Frontiers of Materials Science in China, 2008, 2, 386-391.	0.5	0
186	The nanofabrication of CD34 antibody-VEGF-heparin on titanium surface via layer-by-layer assembly for biofunctionalization. , 2010, , .		0
187	Studies Based on Preparation, Physical Characteristics, and Cellular Pharmacological Activities of Thin PLGA Film Loaded with Geniposide. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-8.	1.2	0