Cristina Marino-Buslje

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5536921/publications.pdf

Version: 2024-02-01

55 papers 1,647 citations

304602 22 h-index 36 g-index

61 all docs

61 docs citations

61 times ranked

2268 citing authors

#	Article	IF	CITATIONS
1	DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Research, 2022, 50, D480-D487.	6.5	117
2	DisPhaseDB: An integrative database of diseases related variations in liquid–liquid phase separation proteins. Computational and Structural Biotechnology Journal, 2022, 20, 2551-2557.	1.9	4
3	Insight into membraneless organelles and their associated proteins: Drivers, Clients and Regulators. Computational and Structural Biotechnology Journal, 2021, 19, 3964-3977.	1.9	24
4	Panels and models for accurate prediction of tumor mutation burden in tumor samples. Npj Precision Oncology, 2021, 5, 31.	2.3	7
5	PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research, 2021, 49, D404-D411.	6.5	95
6	DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 2020, 48, D269-D276.	6.5	141
7	The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. Journal of Experimental Botany, 2020, 71, 1239-1248.	2.4	39
8	Chasing coevolutionary signals in intrinsically disordered proteins complexes. Scientific Reports, 2020, 10, 17962.	1.6	7
9	Characterization of intellectual disability and autism comorbidity through gene panel sequencing. Human Mutation, 2019, 40, 1346-1363.	1.1	54
10	Comutation and exclusion analysis in human tumors: A tool for cancer biology studies and for rational selection of multitargeted therapeutic approaches. Human Mutation, 2019, 40, 413-425.	1.1	0
11	On the dynamical incompleteness of the Protein Data Bank. Briefings in Bioinformatics, 2019, 20, 356-359.	3.2	13
12	Cooperative RNA Recognition by a Viral Transcription Antiterminator. Journal of Molecular Biology, 2018, 430, 777-792.	2.0	10
13	How Does pH Fit in with Oscillating Polar Growth?. Trends in Plant Science, 2018, 23, 479-489.	4.3	33
14	How is structural divergence related to evolutionary information?. Molecular Phylogenetics and Evolution, 2018, 127, 859-866.	1.2	13
15	MISTIC2: comprehensive server to study coevolution in protein families. Nucleic Acids Research, 2018, 46, W323-W328.	6.5	30
16	MIToS.jl: mutual information tools for protein sequence analysis in the Julia language. Bioinformatics, 2017, 33, 564-565.	1.8	17
17	Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell Reports, 2017, 19, 72-85.	2.9	70
18	Protein–protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces. Protein Science, 2017, 26, 2438-2444.	3.1	23

#	Article	IF	Citations
19	Homology modeling in a dynamical world. Protein Science, 2017, 26, 2195-2206.	3.1	17
20	The conundrum of UDP-Glc entrance into the yeast ER lumen. Glycobiology, 2017, 27, 64-79.	1.3	4
21	Using coevolution to improve protein subfamily classification. BMC Bioinformatics, 2015, 16, .	1.2	1
22	I-COMS: Interprotein-COrrelated Mutations Server. Nucleic Acids Research, 2015, 43, W320-W325.	6.5	26
23	Conformational diversity and the emergence of sequence signatures during evolution. Current Opinion in Structural Biology, 2015, 32, 58-65.	2.6	35
24	The Arabidopsis DNA Polymerase \hat{l}' Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering. PLoS Genetics, 2015, 11, e1004975.	1.5	36
25	Differential Contributions of Tacaribe Arenavirus Nucleoprotein N-Terminal and C-Terminal Residues to Nucleocapsid Functional Activity. Journal of Virology, 2014, 88, 6492-6505.	1.5	10
26	Kin-Driver: a database of driver mutations in protein kinases. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau104-bau104.	1.4	23
27	Activating Mutations Cluster in the "Molecular Brake―Regions of Protein Kinases and Do Not Associate with Conserved or Catalytic Residues. Human Mutation, 2014, 35, 318-328.	1.1	20
28	Protein Conformational Diversity Correlates with Evolutionary Rate. Molecular Biology and Evolution, 2013, 30, 1500-1503.	3 . 5	36
29	Oligomerization of the reversibly glycosylated polypeptide: its role during rice plant development and in the regulation of self-glycosylation. Protoplasma, 2013, 250, 111-119.	1.0	3
30	The role of the Nâ€terminal tail for the oligomerization, folding and stability of human frataxin. FEBS Open Bio, 2013, 3, 310-320.	1.0	11
31	MISTIC: mutual information server to infer coevolution. Nucleic Acids Research, 2013, 41, W8-W14.	6.5	157
32	Transcriptional Regulation of Insulin-degrading Enzyme Modulates Mitochondrial Amyloid \hat{l}^2 (A \hat{l}^2) Peptide Catabolism and Functionality. Journal of Biological Chemistry, 2013, 288, 12920-12931.	1.6	31
33	Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction. BMC Bioinformatics, 2012, 13, 235.	1.2	35
34	A Naturally Occurring Hypoallergenic Variant of Vespid Antigen 5 from Polybia scutellaris Venom as a Candidate for Allergen-Specific Immunotherapy. PLoS ONE, 2012, 7, e41351.	1.1	8
35	Mapping the Mutual Information Network of Enzymatic Families in the Protein Structure to Unveil Functional Features. PLoS ONE, 2012, 7, e41430.	1.1	33
36	Sequence Evolution of the Intrinsically Disordered and Globular Domains of a Model Viral Oncoprotein. PLoS ONE, 2012, 7, e47661.	1.1	25

#	Article	IF	Citations
37	The residue 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase. Applied Microbiology and Biotechnology, 2012, 94, 123-130.	1.7	18
38	Molecular Determinants of Arenavirus Z Protein Homo-Oligomerization and L Polymerase Binding. Journal of Virology, 2011, 85, 12304-12314.	1.5	33
39	Biochemical characterization of serine acetyltransferase and cysteine desulfhydrase from Leishmania major. Molecular and Biochemical Parasitology, 2010, 173, 170-174.	0.5	11
40	Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification. PLoS Computational Biology, 2010, 6, e1000978.	1.5	74
41	A New Conformation in Sarcoplasmic Reticulum Calcium Pump and Plasma Membrane Ca2+ Pumps Revealed by a Photoactivatable Phospholipidic Probe. Journal of Biological Chemistry, 2009, 284, 4823-4828.	1.6	18
42	Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Bioinformatics, 2009, 25, 1125-1131.	1.8	88
43	Structural Selection of a Native Fold by Peptide Recognition. Insights into the Thioredoxin Folding Mechanism. Biochemistry, 2009, 48, 595-607.	1.2	10
44	Interactions between α-conotoxin MI and the Torpedo marmorata receptor α–δ interface. Biochemical and Biophysical Research Communications, 2007, 355, 275-279.	1.0	8
45	Consolidation of the Thioredoxin Fold by Peptide Recognition:  Interaction between E. coli Thioredoxin Fragments 1â~'93 and 94â~'108. Biochemistry, 2007, 46, 5148-5159.	1.2	13
46	Structural aspects of the Mucor bacilliformis proteinase, a new member of the aspartyl-proteinase family. Journal of Biotechnology, 2006, 123, 443-452.	1.9	12
47	Structural determinants of binding and specificity in transforming growth factor-receptor interactions. Proteins: Structure, Function and Bioinformatics, 2001, 45, 408-420.	1.5	11
48	Contribution of C-tail residues of potato carboxypeptidase inhibitor to the binding to carboxypeptidaseâ€fA. FEBS Journal, 2000, 267, 1502-1509.	0.2	18
49	Replacement of methionine-161 with threonine eliminates a major by-product of human glutamate decarboxylase 65-kDa variant expression in Escherichia coli. Biotechnology and Applied Biochemistry, 2000, 31, 205.	1.4	4
50	Structural domains of the insulin receptor and IGF receptor required for dimerisation and ligand binding. FEBS Letters, 2000, 467, 226-230.	1.3	23
51	The Insulin Receptor: from Protein Sequence to Structure. Biochemical Society Transactions, 1999, 27, 715-726.	1.6	36
52	Cloning, sequencing and functional expression of a cDNA encoding porcine pancreatic preprocarboxypeptidase A1. FEBS Journal, 1999, 259, 719-726.	0.2	8
53	A third fibronectin type III domain in the extracellular region of the insulin receptor family. FEBS Letters, 1998, 441, 331-336.	1.3	28
54	On the Entropic and Hydrophobic Properties Involved in the Inhibitory Mechanism of Carboxypeptidase A by its Natural Inhibitor from Potato. Journal of Molecular Modeling, 1995, 1, 54-67.	0.8	3

#	Article	IF	CITATIONS
55	Overproduction of a recombinant carboxypeptidase inhibitor by optimization of fermentation conditions. Applied Microbiology and Biotechnology, 1994, 41, 632-637.	1.7	13