
Claire E Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5536881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of prefrontal and limbic brain regions and anxiety disorders in children born very preterm. Psychological Medicine, 2023, 53, 759-770.	2.7	3
2	The Structural Connectome and Internalizing and Externalizing Symptoms at 7 and 13 Years in Individuals Born Very Preterm and Full Term. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 424-434.	1.1	7
3	Investigating brain structural maturation in children and adolescents born very preterm using the brain age framework. NeuroImage, 2022, 247, 118828.	2.1	8
4	Brain tissue microstructural and free-water composition 13 years after very preterm birth. NeuroImage, 2022, 254, 119168.	2.1	5
5	Brain White Matter Development Over the First 13 Years in Very Preterm and Typically Developing Children Based on the <i>T</i> ₁ -w/ <i>T</i> ₂ -w Ratio. Neurology, 2022, 98, .	1.5	6
6	Development of regional brain gray matter volume across the first 13Âyears of life is associated with childhood math computation ability for children born very preterm and full term. Brain and Cognition, 2022, 160, 105875.	0.8	3
7	Early parenting is associated with the developing brains of children born very preterm. Clinical Neuropsychologist, 2021, 35, 885-903.	1.5	15
8	White matter tracts related to memory and emotion in very preterm children. Pediatric Research, 2021, 89, 1452-1460.	1.1	7
9	Investigating the brain structural connectome following working memory training in children born extremely preterm or extremely low birth weight. Journal of Neuroscience Research, 2021, 99, 2340-2350.	1.3	2
10	Longitudinal Changes in the Sensorimotor Pathways of Very Preterm Infants During the First Year of Life With and Without Intervention: A Pilot Study. Developmental Neurorehabilitation, 2021, 24, 448-455.	0.5	1
11	Individual variation underlying brain age estimates in typical development. NeuroImage, 2021, 235, 118036.	2.1	30
12	Development of brain white matter and math computation ability in children born very preterm and full-term. Developmental Cognitive Neuroscience, 2021, 51, 100987.	1.9	4
13	Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. NeuroImage, 2021, 241, 118417.	2.1	117
14	Basal ganglia and thalamic tract connectivity in very preterm and full-term children; associations with 7-year neurodevelopment. Pediatric Research, 2020, 87, 48-56.	1.1	13
15	Working memory training and brain structure and function in extremely preterm or extremely low birth weight children. Human Brain Mapping, 2020, 41, 684-696.	1.9	13
16	Regional brain volumes, microstructure and neurodevelopment in moderate–late preterm children. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 593-599.	1.4	13
17	Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis. NeuroImage, 2020, 220, 117068.	2.1	25
18	White matter extension of the Melbourne Children's Regional Infant Brain atlas: M RIBâ€WM. Human Brain Mapping, 2020, 41, 2317-2333.	1.9	11

CLAIRE E KELLY

#	Article	IF	CITATIONS
19	Tracking regional brain growth up to age 13 in children born term and very preterm. Nature Communications, 2020, 11, 696.	5.8	40
20	Efficiency of structural connectivity networks relates to intrinsic motivation in children born extremely preterm. Brain Imaging and Behavior, 2019, 13, 995-1008.	1.1	2
21	Changes in neonatal regional brain volume associated with preterm birth and perinatal factors. NeuroImage, 2019, 185, 654-663.	2.1	45
22	White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term. NeuroImage: Clinical, 2019, 24, 101944.	1.4	17
23	Very preterm children at risk for developmental coordination disorder have brain alterations in motor areas. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1649-1660.	0.7	32
24	Desikan-Killiany-Tourville Atlas Compatible Version of M-CRIB Neonatal Parcellated Whole Brain Atlas: The M-CRIB 2.0. Frontiers in Neuroscience, 2019, 13, 34.	1.4	25
25	Characterisation of brain volume and microstructure at term-equivalent age in infants born across the gestational age spectrum. Neurolmage: Clinical, 2019, 21, 101630.	1.4	35
26	Brain structure and neurological and behavioural functioning in infants born preterm. Developmental Medicine and Child Neurology, 2019, 61, 820-831.	1,1	23
27	Early life predictors of brain development at term-equivalent age in infants born across the gestational age spectrum. NeuroImage, 2019, 185, 813-824.	2.1	58
28	Caffeine for apnea of prematurity and brain development at 11Âyears of age. Annals of Clinical and Translational Neurology, 2018, 5, 1112-1127.	1.7	13
29	White matter microstructure is associated with language in children born very preterm. NeuroImage: Clinical, 2018, 20, 808-822.	1.4	28
30	A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas. NeuroImage, 2017, 147, 841-851.	2.1	74
31	Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation. Frontiers in Neuroinformatics, 2016, 10, 12.	1.3	84
32	Motor trajectories from birth to 5 years of children born at less than 30 weeks' gestation: early predictors and functional implications. Protocol for a prospective cohort study. Journal of Physiotherapy, 2016, 62, 222-223.	0.7	20
33	Structural connectivity relates to perinatal factors and functional impairment at 7 years in children born very preterm. NeuroImage, 2016, 134, 328-337.	2.1	58
34	Axon density and axon orientation dispersion in children born preterm. Human Brain Mapping, 2016, 37, 3080-3102.	1.9	50
35	Moderate and late preterm infants exhibit widespread brain white matter microstructure alterations at term-equivalent age relative to term-born controls. Brain Imaging and Behavior, 2016, 10, 41-49.	1.1	66
36	Brain structural and microstructural alterations associated with cerebral palsy and motor impairments in adolescents born extremely preterm and/or extremely low birthweight. Developmental Medicine and Child Neurology, 2015, 57, 1168-1175.	1.1	23

#	Article	IF	CITATIONS
37	Neural Correlates of Impaired Vision in Adolescents Born Extremely Preterm and/or Extremely Low Birthweight. PLoS ONE, 2014, 9, e93188.	1.1	22
38	Alterations in the optic radiations of very preterm children—Perinatal predictors and relationships with visual outcomes. NeuroImage: Clinical, 2014, 4, 145-153.	1.4	35