Raffaella Faraonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5536738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants, 2022, 11, 480.	5.1	21
2	Vitamin D Status, Cardiovascular Risk Profile, and miRNA-21 Levels in Hypertensive Patients: Results of the HYPODD Study. Nutrients, 2022, 14, 2683.	4.1	6
3	Low-protein/high-carbohydrate diet induces AMPK-dependent canonical and non-canonical thermogenesis in subcutaneous adipose tissue. Redox Biology, 2020, 36, 101633.	9.0	18
4	Editorial: Advances in Metabolic Mechanisms of Aging and Its Related Diseases. Frontiers in Physiology, 2020, 11, 594974.	2.8	1
5	An Overview of the Ferroptosis Hallmarks in Friedreich's Ataxia. Biomolecules, 2020, 10, 1489.	4.0	21
6	Fasting Drives Nrf2-Related Antioxidant Response in Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 7780.	4.1	13
7	Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms. International Journal of Molecular Sciences, 2020, 21, 5989.	4.1	6
8	Urinary Biomarkers: Diagnostic Tools for Monitoring Athletes' Health Status. International Journal of Environmental Research and Public Health, 2020, 17, 6065.	2.6	14
9	Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1. International Journal of Molecular Sciences, 2020, 21, 6606.	4.1	26
10	Increased Prevalence of Nephrolithiasis and Hyperoxaluria in Paget Disease of Bone. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4430-e4438.	3.6	4
11	The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer. Frontiers in Oncology, 2020, 10, 150.	2.8	146
12	Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue. Cell Death and Disease, 2020, 11, 51.	6.3	47
13	PERK-Mediated Unfolded Protein Response Activation and Oxidative Stress in PARK20 Fibroblasts. Frontiers in Neuroscience, 2019, 13, 673.	2.8	38
14	Vitamin D Status in Paget Disease of Bone and Efficacy–Safety Profile of Cholecalciferol Treatment in Pagetic Patients with Hypovitaminosis D. Calcified Tissue International, 2019, 105, 412-422.	3.1	10
15	Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Communications Biology, 2019, 2, 317.	4.4	59
16	GKN1 expression in gastric cancer cells is negatively regulated by miR-544a. Biochimie, 2019, 167, 42-48.	2.6	11
17	Nrf2 Pathway in Age-Related Neurological Disorders: Insights into MicroRNAs. Cellular Physiology and Biochemistry, 2018, 47, 1951-1976.	1.6	77
18	Formyl Peptide Receptor 1 Modulates Endothelial Cell Functions by NADPH Oxidase-Dependent VEGFR2 Transactivation, Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	28

Raffaella Faraonio

#	Article	IF	CITATIONS
19	microRNA-494 Favors HO-1 Expression in Neuroblastoma Cells Exposed to Oxidative Stress in a Bach1-Independent Way. Frontiers in Oncology, 2018, 8, 199.	2.8	21
20	Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 547.	4.1	45
21	miR-128 Is Implicated in Stress Responses by Targeting MAFG in Skeletal Muscle Cells. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	4.0	34
22	Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. Journal of Proteomics, 2015, 128, 18-29.	2.4	15
23	Comparative Analysis of Gene Expression Data Reveals Novel Targets of Senescence-Associated microRNAs. PLoS ONE, 2014, 9, e98669.	2.5	17
24	Identification of miRâ€494 direct targets involved in senescence of human diploid fibroblasts. FASEB Journal, 2014, 28, 3720-3733.	0.5	34
25	A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death and Differentiation, 2012, 19, 713-721.	11.2	125
26	Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton's tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Research, 2008, 36, 4402-4416.	14.5	28
27	Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. Journal of Neuroscience Research, 2007, 85, 612-622.	2.9	106
28	Transcription Regulation in NIH3T3 Cell Clones Resistant to Diethylmaleate-Induced Oxidative Stress and Apoptosis. Antioxidants and Redox Signaling, 2006, 8, 365-374.	5.4	20
29	Detection and functional analysis of an SNP in the promoter of the human ferritin H gene that modulates the gene expression. Gene, 2006, 377, 1-5.	2.2	8
30	Nitric oxide-induced endoplasmic reticulum stress activates the expression of cargo receptor proteins and alters the glycoprotein transport to the Golgi complex. International Journal of Biochemistry and Cell Biology, 2006, 38, 2040-2048.	2.8	18
31	p53 Suppresses the Nrf2-dependent Transcription of Antioxidant Response Genes. Journal of Biological Chemistry, 2006, 281, 39776-39784.	3.4	290
32	Heat Shock Induces Preferential Translation of ERGIC-53 and Affects Its Recycling Pathway. Journal of Biological Chemistry, 2004, 279, 42535-42544.	3.4	29
33	Redox Control of Signal Transduction, Gene Expression and Cellular Senescence. Neurochemical Research, 2004, 29, 617-628.	3.3	109
34	Fe65, a Ligand of the Alzheimer's Î ² -Amyloid Precursor Protein, Blocks Cell Cycle Progression by Down-regulating Thymidylate Synthase Expression. Journal of Biological Chemistry, 2002, 277, 35481-35488.	3.4	70
35	In vitro acquired cellular senescence and aging-specific phenotype can be distinguished on the basis of specific mRNA expression. Cell Death and Differentiation, 2002, 9, 862-864.	11.2	14
36	The β-Amyloid Precursor Protein Functions as a Cytosolic Anchoring Site That Prevents Fe65 Nuclear Translocation. Journal of Biological Chemistry, 2001, 276, 6545-6550.	3.4	120

Raffaella Faraonio

#	Article	IF	CITATIONS
37	Characterization of cis-acting elements in the promoter of the mouse metallothionein-3 gene. FEBS Journal, 2000, 267, 1743-1753.	0.2	23
38	Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's β-amyloid precursor protein. FEBS Letters, 1998, 434, 1-7.	2.8	106
39	Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's β-amyloid precursor protein. Biochemical Journal, 1998, 330, 513-519.	3.7	91
40	Interaction of the Phosphotyrosine Interaction/Phosphotyrosine Binding-related Domains of Fe65 with Wild-type and Mutant Alzheimer's β-Amyloid Precursor Proteins. Journal of Biological Chemistry, 1997, 272, 6399-6405.	3.4	141
41	DNA-binding protein Pur \hat{l}_{\pm} and transcription factor YY1 function as transcription activators of the neuron-specific FE65 gene promoter. Biochemical Journal, 1997, 328, 293-300.	3.7	67
42	Expression of the Neuron-Specific FE65 Gene Marks the Development of Embryo Ganglionic Derivatives. Developmental Neuroscience, 1994, 16, 53-60.	2.0	30
43	The DNA sequence encompassing the transcription start site of a TATA-less promoter contains enough information to drive neuron-specific transcription. Nucleic Acids Research, 1994, 22, 4876-4883.	14.5	32
44	Cellular retinoic-acid-binding-protein and retinol-binding-protein mRNA expression in the cells of the rat seminiferous tubules and their regulation by retinoids. FEBS Journal, 1993, 211, 835-842.	0.2	15
45	Extinction of retinol-binding protein gene expression in somatic cell-hybrids: identification of the target sequences. Nucleic Acids Research, 1990, 18, 7235-7242.	14.5	5
46	Regional mapping of RBP4 to 10q23?q24 and RBP1 to 3q21?q22 in man. Somatic Cell and Molecular Genetics, 1989, 15, 185-190.	0.7	42
47	Expression of liver-specific genes coding for plasma proteins in protein deficiency. FEBS Letters, 1989, 257, 215-218.	2.8	15
48	Detection of Cellular Retinol-Binding Protein messenger RNA in the somatic cells of the rat seminiferous tubules. Biochemical and Biophysical Research Communications, 1988, 154, 1174-1181.	2.1	11