Elizabeth L. Clare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5536525/publications.pdf

Version: 2024-02-01

172457 206112 3,684 50 29 48 citations h-index g-index papers 58 58 58 3739 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Counting with <scp>DNA</scp> in metabarcoding studies: How should we convert sequence reads to dietary data?. Molecular Ecology, 2019, 28, 391-406.	3.9	455
2	Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution, 2018, 9, 278-291.	5.2	320
3	DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 2007, 7, 184-190.	1.7	261
4	Species on the menu of a generalist predator, the eastern red bat (<i>Lasiurus borealis</i>): using a molecular approach to detect arthropod prey. Molecular Ecology, 2009, 18, 2532-2542.	3.9	225
5	Molecular Diet Analysis of Two African Free-Tailed Bats (Molossidae) Using High Throughput Sequencing. PLoS ONE, 2011, 6, e21441.	2.5	175
6	Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 2011, 20, 1772-1780.	3.9	170
7	Highâ€throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecology and Evolution, 2011, 1, 556-570.	1.9	163
8	Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evolutionary Applications, 2014, 7, 1144-1157.	3.1	163
9	A pragmatic approach to the analysis of diets of generalist predators: the use of nextâ€generation sequencing with no blocking probes. Molecular Ecology Resources, 2014, 14, 18-26.	4.8	147
10	Neotropical Bats: Estimating Species Diversity with DNA Barcodes. PLoS ONE, 2011, 6, e22648.	2.5	138
11	The diet of <i><scp>M</scp>yotis lucifugus</i> across <scp>C</scp> anada: assessing foraging quality and diet variability. Molecular Ecology, 2014, 23, 3618-3632.	3.9	111
12	An inordinate fondness for beetles? Variation in seasonal dietary preferences of nightâ€roosting big brown bats (<i>Eptesicus fuscus</i>). Molecular Ecology, 2014, 23, 3633-3647.	3.9	105
13	The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data. Genome, 2016, 59, 981-990.	2.0	73
14	Resource partitioning by insectivorous bats in <scp>J</scp> amaica. Molecular Ecology, 2014, 23, 3648-3656.	3.9	68
15	Dietary competition between the alien <scp>A</scp> sian <scp>M</scp> usk <scp>S</scp> hrew (<i><scp>S</scp>uncus murinus</i>) and a reâ€introduced population of <scp>T</scp> elfair's <scp>S</scp> kink (<i><scp>L</scp>eiolopisma telfairii</i>). Molecular Ecology, 2014, 23, 3695-3705.	3.9	65
16	DNA Barcoding in Mammals. Methods in Molecular Biology, 2012, 858, 153-182.	0.9	63
17	eDNAir: proof of concept that animal DNA can be collected from air sampling. Peerl, 2021, 9, e11030.	2.0	58
18	Measuring biodiversity from DNA in the air. Current Biology, 2022, 32, 693-700.e5.	3.9	58

#	Article	IF	CITATIONS
19	Diet of the insectivorous bat <i><scp>P</scp>ipistrellus nathusii</i> during autumn migration and summer residence. Molecular Ecology, 2014, 23, 3672-3683.	3.9	57
20	Cryptic Species? Patterns of Maternal and Paternal Gene Flow in Eight Neotropical Bats. PLoS ONE, 2011, 6, e21460.	2.5	55
21	Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii. BMC Evolutionary Biology, 2013, 13, 26.	3.2	54
22	Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular Ecology, 2015, 24, 5296-5307.	3.9	52
23	Assessing niche partitioning of coâ€occurring sibling bat species by <scp>DNA</scp> metabarcoding. Molecular Ecology, 2018, 27, 1273-1283.	3.9	52
24	Trophic niche flexibility in $\langle scp \rangle \langle i \rangle G \langle ji \rangle \langle scp \rangle \langle i \rangle lossophaga soricina \langle ji \rangle$: how a nectar seeker sneaks an insect snack. Functional Ecology, 2014, 28, 632-641.	3.6	51
25	An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species <i><scp>M</scp>yotis dasycneme</i> and <i><scp>M</scp>yotis daubentonii</i> Ecology, 2014, 23, 3657-3671.	3.9	50
26	Flower preferences and pollen transport networks for cavityâ€nesting solitary bees: Implications for the design of agriâ€environment schemes. Ecology and Evolution, 2018, 8, 7574-7587.	1.9	44
27	Diagnosing Mitochondrial DNA Diversity: Applications of a Sentinel Gene Approach. Journal of Molecular Evolution, 2008, 66, 362-367.	1.8	39
28	Molecular diet analysis finds an insectivorous desert bat community dominated by resource sharing despite diverse echolocation and foraging strategies. Ecology and Evolution, 2019, 9, 3117-3129.	1.9	38
29	Approaches to integrating genetic data into ecological networks. Molecular Ecology, 2019, 28, 503-519.	3.9	37
30	Using metabarcoding to compare the suitability of two bloodâ€feeding leech species for sampling mammalian diversity in North Borneo. Molecular Ecology Resources, 2019, 19, 105-117.	4.8	31
31	Impact of urbanisation and agriculture on the diet of fruit bats. Urban Ecosystems, 2018, 21, 61-70.	2.4	30
32	Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environmental DNA, 2021, 3, 1247-1266.	5.8	29
33	Barcoding the food chain: from Sanger to high-throughput sequencing. Genome, 2016, 59, 946-958.	2.0	27
34	Leech bloodâ€meal invertebrateâ€derived DNA reveals differences in Bornean mammal diversity across habitats. Molecular Ecology, 2021, 30, 3299-3312.	3.9	24
35	Dung beetles as samplers of mammals in Malaysian Borneoâ€"a test of high throughput metabarcoding of iDNA. PeerJ, 2021, 9, e11897.	2.0	21
36	Island bat diets: does it matter more who you are or where you live?. Molecular Ecology, 2014, 23, 3684-3694.	3.9	19

#	Article	IF	CITATIONS
37	Assessing the impact of taxon resolution on network structure. Ecology, 2021, 102, e03256.	3.2	19
38	Spatiotemporal and demographic variation in the diet of New Zealand lesser shortâ€ŧailed bats (Mystacina tuberculata). Ecology and Evolution, 2018, 8, 7599-7610.	1.9	17
39	Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces. ELife, 2015, 4, .	6.0	16
40	Trophic resource partitioning drives fineâ€scale coexistence in cryptic bat species. Ecology and Evolution, 2020, 10, 14122-14136.	1.9	14
41	Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia:) Tj ETQq1 1	0,784314 2.5	1 rgBT /Over
42	Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Molecular Ecology, 2021, 30, 5844-5857.	3.9	10
43	The effects of pastoral intensification on the feeding interactions of generalist predators in streams. Molecular Ecology, 2018, 27, 590-602.	3.9	9
44	Occurrence of bloodâ€feeding terrestrial leeches (Haemadipsidae) in a degraded forest ecosystem and their potential as ecological indicators. Biotropica, 2020, 52, 302-312.	1.6	9
45	The structure of tropical bat–plant interaction networks during an extreme El Niñoâ€Southern Oscillation event. Molecular Ecology, 2022, 31, 1892-1906.	3.9	7
46	<scp>DNA</scp> metabarcoding reveals changes in the contents of carnivorous plants along an elevation gradient. Molecular Ecology, 2019, 28, 281-292.	3.9	6
47	Differential effects of fertilisers on pollination and parasitoid interaction networks. Journal of Animal Ecology, 2021, 90, 404-414.	2.8	4
48	Molecular diet analysis of the marine fish-eating bat (<i>Myotis vivesi</i>) and potential mercury exposure. Canadian Journal of Zoology, 2021, 99, 752-759.	1.0	3
49	Selective Logging Shows No Impact on the Dietary Breadth of a Generalist Bat Species: The Fawn Leaf-Nosed Bat (Hipposideros cervinus). Frontiers in Ecology and Evolution, 2021, 9, .	2.2	O
50	Shunning the scoop: Sidestepping the race to publish. IScience, 2022, 25, 104080.	4.1	0