Charles K Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5536122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique Geothermal Chemistry Shapes Microbial Communities on Mt. Erebus, Antarctica. Frontiers in Microbiology, 2022, 13, 836943.	3.5	3
2	Microbial Succession under Freeze–Thaw Events and Its Potential for Hydrocarbon Degradation in Nutrient-Amended Antarctic Soil. Microorganisms, 2021, 9, 609.	3.6	4
3	Geochemically Defined Space-for-Time Transects Successfully Capture Microbial Dynamics Along Lacustrine Chronosequences in a Polar Desert. Frontiers in Microbiology, 2021, 12, 783767.	3.5	5
4	A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand. PLoS ONE, 2020, 15, e0237079.	2.5	20
5	Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiology Ecology, 2020, 96, .	2.7	23
6	Detection and community-level identification of microbial mats in the McMurdo Dry Valleys using drone-based hyperspectral reflectance imaging. Antarctic Science, 2020, 32, 367-381.	0.9	15
7	Understanding the Response of Nitrifying Communities to Disturbance in the McMurdo Dry Valleys, Antarctica. Microorganisms, 2020, 8, 404.	3.6	13
8	The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology, 2020, 96, .	2.7	20
9	Title is missing!. , 2020, 15, e0237079.		0
10	Title is missing!. , 2020, 15, e0237079.		0
11	Title is missing!. , 2020, 15, e0237079.		0
12	Title is missing!. , 2020, 15, e0237079.		0
13	Title is missing!. , 2020, 15, e0237079.		0
14	Title is missing!. , 2020, 15, e0237079.		0
15	Laboratory rearing of huhu, Prionoplus reticularis (Cerambycidae): insights into the gut microbiome. New Zealand Journal of Zoology, 2019, 46, 1-12.	1.1	0
16	Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Frontiers in Microbiology, 2019, 10, 1018.	3.5	50
17	Airborne microbial transport limitation to isolated Antarctic soil habitats. Nature Microbiology, 2019, 4, 925-932.	13.3	114
18	Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals. Communications Biology, 2019, 2, 63.	4.4	34

CHARLES K LEE

#	Article	IF	CITATIONS
19	Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Communications Biology, 2019, 2, 62.	4.4	42
20	Biases in the metabarcoding of plant pathogens using rust fungi as a model system. MicrobiologyOpen, 2019, 8, e780.	3.0	16
21	Processes driving soil CO2 temporal variability in Antarctic Dry Valleys. Geoderma, 2019, 337, 871-879.	5.1	5
22	Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biology, 2018, 41, 417-421.	1.2	48
23	Stochastic and Deterministic Effects of a Moisture Gradient on Soil Microbial Communities in the McMurdo Dry Valleys of Antarctica. Frontiers in Microbiology, 2018, 9, 2619.	3.5	41
24	Microbial biogeography of 925 geothermal springs in New Zealand. Nature Communications, 2018, 9, 2876.	12.8	163
25	Bacterial bioclusters relate to hydrochemistry in New Zealand groundwater. FEMS Microbiology Ecology, 2018, 94, .	2.7	10
26	Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. , 2018, , .		58
27	Draft Genome Sequence of Uncultured Upland Soil Cluster <i>Gammaproteobacteria</i> Gives Molecular Insights into High-Affinity Methanotrophy. Genome Announcements, 2017, 5, .	0.8	18
28	Global Diversity of Desert Hypolithic Cyanobacteria. Frontiers in Microbiology, 2017, 8, 867.	3.5	61
29	Temporal, regional and geochemical drivers of microbial community variation in the melt ponds of the Ross Sea region, Antarctica. Polar Biology, 2016, 39, 267-282.	1.2	6
30	Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Frontiers in Microbiology, 2015, 6, 485.	3.5	28
31	Application of an unmanned aerial vehicle in spatial mapping of terrestrial biology and human disturbance in the McMurdo Dry Valleys, East Antarctica. Polar Biology, 2015, 38, 573-578.	1.2	54
32	Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature Communications, 2014, 5, 3875.	12.8	76
33	The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Frontiers in Microbiology, 2014, 5, 515.	3.5	34
34	Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology, 2014, 89, 347-359.	2.7	44
35	Characterization of Chasmoendolithic Community in Miers Valley, McMurdo Dry Valleys, Antarctica. Microbial Ecology, 2014, 68, 351-359.	2.8	77
36	The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys. Biology, 2014, 3, 466-483.	2.8	44

CHARLES K LEE

#	Article	IF	CITATIONS
37	Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs. ISME Journal, 2013, 7, 1051-1064.	9.8	33
38	First year-round record of Antarctic Dry Valley soil CO2 flux. Soil Biology and Biochemistry, 2013, 66, 193-196.	8.8	15
39	Determination of Enzyme Thermal Parameters for Rational Enzyme Engineering and Environmental/Evolutionary Studies. Methods in Molecular Biology, 2013, 996, 219-230.	0.9	2
40	Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere, 2013, 4, 1-24.	2.2	45
41	Diversity and Distributional Patterns of Ciliates in Guaymas Basin Hydrothermal Vent Sediments. Journal of Eukaryotic Microbiology, 2013, 60, 433-447.	1.7	32
42	Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Frontiers in Microbiology, 2013, 4, 182.	3.5	44
43	The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities. ISME Journal, 2012, 6, 1046-1057.	9.8	273
44	Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nature Communications, 2012, 3, 660.	12.8	69
45	Groundtruthing Next-Gen Sequencing for Microbial Ecology–Biases and Errors in Community Structure Estimates from PCR Amplicon Pyrosequencing. PLoS ONE, 2012, 7, e44224.	2.5	145
46	Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications, 2011, 2, 163.	12.8	203
47	The molecular basis of the effect of temperature on enzyme activity. Biochemical Journal, 2010, 425, 353-360.	3.7	107
48	Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola. PLoS Genetics, 2009, 5, e1000362.	3.5	126
49	The effect of temperature on enzyme activity: new insights and their implications. Extremophiles, 2008, 12, 51-59.	2.3	88
50	Enzymic Approach to Eurythermalism of <i>Alvinella pompejana</i> and Its Episymbionts. Applied and Environmental Microbiology, 2008, 74, 774-782.	3.1	9
51	Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17516-17521.	7.1	111
52	Eurythermalism and the temperature dependence of enzyme activity. FASEB Journal, 2007, 21, 1934-1941.	0.5	29
53	New parameters controlling the effect of temperature on enzyme activity. Biochemical Society Transactions, 2007, 35, 1543-1546.	3.4	13