Marco Diana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5535701/publications.pdf Version: 2024-02-01

Μάροο Πιάνια

#	Article	IF	CITATIONS
1	The hypodopaminergic state ten years after: transcranial magnetic stimulation as a tool to test the dopamine hypothesis of drug addiction. Current Opinion in Pharmacology, 2021, 56, 61-67.	1.7	15
2	Transcranial Magnetic Stimulation: A review about its efficacy in the treatment of alcohol, tobacco and cocaine addiction. Addictive Behaviors, 2021, 114, 106760.	1.7	38
3	New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT2 receptors in pharmacological and behavioral effects in the rat. Experimental Neurology, 2021, 345, 113836.	2.0	4
4	Editorial: The Therapeutic Potential of Transcranial Magnetic Stimulation in Addiction. Frontiers in Neuroscience, 2020, 14, 614642.	1.4	1
5	Repetitive transcranial magnetic stimulation: Re-wiring the alcoholic human brain. Alcohol, 2019, 74, 113-124.	0.8	10
6	Intermittent Theta Burst Stimulation of the Prefrontal Cortex in Cocaine Use Disorder: A Pilot Study. Frontiers in Neuroscience, 2019, 13, 765.	1.4	35
7	Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neuroscience and Biobehavioral Reviews, 2019, 104, 118-140.	2.9	198
8	Dopamine Restores Limbic Memory Loss, Dendritic Spine Structure, and NMDAR-Dependent LTD in the Nucleus Accumbens of Alcohol-Withdrawn Rats. Journal of Neuroscience, 2019, 39, 929-943.	1.7	24
9	A Preliminary Investigation on Smokeless Tobacco Use and Its Cognitive Effects Among Athletes. Frontiers in Pharmacology, 2018, 9, 216.	1.6	12
10	Transcranial magnetic stimulation for the treatment of cocaine addiction: evidence to date. Substance Abuse and Rehabilitation, 2018, Volume 9, 11-21.	1.6	26
11	In situ forming biodegradable poly(Îμ-caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies. Expert Opinion on Drug Delivery, 2017, 14, 453-465.	2.4	7
12	NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nature Communications, 2017, 8, 14456.	5.8	39
13	Deep Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex in Alcohol Use Disorder Patients: Effects on Dopamine Transporter Availability and Alcohol Intake. European Neuropsychopharmacology, 2017, 27, 450-461.	0.3	62
14	Rehabilitating the addicted brain with transcranial magnetic stimulation. Nature Reviews Neuroscience, 2017, 18, 685-693.	4.9	184
15	Deep transcranial magnetic stimulation of the dorsolateral prefrontal cortex in alcohol use disorder patients: Effects on dopamine transporter availability and alcohol intake. Digestive and Liver Disease, 2017, 49, e240.	0.4	1
16	On the Accuracy of In Vivo Ethanol and Acetaldehyde Monitoring, a Key Tile in the Puzzle of Acetaldehyde as a Neuroactive Agent. Frontiers in Behavioral Neuroscience, 2017, 11, 97.	1.0	4
17	Bilateral Transcranial Magnetic Stimulation of the Prefrontal Cortex Reduces Cocaine Intake: A Pilot Study. Frontiers in Psychiatry, 2016, 7, 133.	1.3	66

18 Cannabis and the Mesolimbic System. , 2016, , 795-803.

#	Article	IF	CITATIONS
19	Drug addiction: An affective-cognitive disorder in need of a cure. Neuroscience and Biobehavioral Reviews, 2016, 65, 341-361.	2.9	44
20	The novel cannabinoid antagonist SM-11 reduces hedonic aspect of food intake through a dopamine-dependent mechanism. Pharmacological Research, 2016, 113, 108-115.	3.1	12
21	Opioid antagonists block acetaldehyde-induced increments in dopamine neurons activity. Drug and Alcohol Dependence, 2016, 158, 172-176.	1.6	6
22	Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective. Neuroscience, 2016, 322, 195-207.	1.1	8
23	SY02-5DOPAMINE HASTENS LTD IN THE NACC OF ETHANOL-DEPENDENT RATS. Alcohol and Alcoholism, 2015, 50, i4.2-i4.	0.9	Ο
24	Ventral Subiculum Stimulation Promotes Persistent Hyperactivity of Dopamine Neurons and Facilitates Behavioral Effects of Cocaine. Cell Reports, 2015, 13, 2287-2296.	2.9	29
25	Cocaine Dependence and Stroke: Pathogenesis and Management. Current Neurovascular Research, 2015, 12, 163-172.	0.4	37
26	Co-Transplantation of Endothelial Progenitor Cells and Pancreatic Islets to Induce Long-Lasting Normoglycemia in Streptozotocin-Treated Diabetic Rats. PLoS ONE, 2014, 9, e94783.	1.1	30
27	Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3745-54.	3.3	82
28	Nicotine-induced increase of dopaminergic mesoaccumbal neuron activity is prevented by acute restraint stress. In vivo electrophysiology in rats. European Neuropsychopharmacology, 2014, 24, 1175-1180.	0.3	5
29	Preface. Progress in Brain Research, 2014, 211, ix.	0.9	1
30	A robust, state-of-the-art amperometric microbiosensor for glutamate detection. Biosensors and Bioelectronics, 2014, 61, 526-531.	5.3	14
31	The ââ,¬Å"addictedââ,¬Â•spine. Frontiers in Neuroanatomy, 2014, 8, 110.	0.9	53
32	Acute restraint stress prevents nicotine-induced mesolimbic dopaminergic activation via a corticosterone-mediated mechanism: A microdialysis study in the rat. Drug and Alcohol Dependence, 2013, 127, 8-14.	1.6	9
33	Alpha-Lipoic Acid Reduces Ethanol Self-Administration in Rats. Alcoholism: Clinical and Experimental Research, 2013, 37, 1816-1822.	1.4	15
34	The Addicted Brain. Frontiers in Psychiatry, 2013, 4, 40.	1.3	8
35	Ethanol-derived acetaldehyde: pleasure and pain of alcohol mechanism of action. Frontiers in Behavioral Neuroscience, 2013, 7, 87.	1.0	12
36	Novel Therapeutic Strategies for Alcohol and Drug Addiction: Focus on GABA, Ion Channels and Transcranial Magnetic Stimulation. Neuropsychopharmacology, 2012, 37, 163-177.	2.8	74

#	Article	IF	CITATIONS
37	Effect of l-cysteine on acetaldehyde self-administration. Alcohol, 2012, 46, 489-497.	0.8	18
38	The Dopamine Hypothesis of Drug Addiction and Its Potential Therapeutic Value. Frontiers in Psychiatry, 2011, 2, 64.	1.3	175
39	l-cysteine Prevents Ethanol-Induced Stimulation of Mesolimbic Dopamine Transmission. Alcoholism: Clinical and Experimental Research, 2011, 35, 862-869.	1.4	19
40	Simultaneous Golgi-Cox and immunofluorescence using confocal microscopy. Brain Structure and Function, 2011, 216, 171-182.	1.2	40
41	Altered Mesolimbic Dopamine System in THC Dependence. Current Neuropharmacology, 2011, 9, 200-204.	1.4	15
42	Turning the Clock Ahead: Potential Preclinical and Clinical Neuropharmacological Targets for Alcohol Dependence. Current Pharmaceutical Design, 2010, 16, 2159-2181.	0.9	31
43	l-Cysteine reduces oral ethanol self-administration and reinstatement of ethanol-drinking behavior in rats. Pharmacology Biochemistry and Behavior, 2010, 94, 431-437.	1.3	31
44	PRECLINICAL STUDY: FULL ARTICLE: Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependence. Addiction Biology, 2010, 15, 266-276.	1.4	51
45	Acetaldehyde-reinforcing effects: a study on oral self-administration behavior. Frontiers in Psychiatry, 2010, 1, 23.	1.3	31
46	Reduction of Ethanolâ€Derived Acetaldehyde Induced Motivational Properties by <scp> </scp> ysteine. Alcoholism: Clinical and Experimental Research, 2009, 33, 43-48.	1.4	31
47	Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress. Alcohol, 2009, 43, 531-539.	0.8	56
48	Acetaldehyde sequestering prevents ethanol-induced stimulation of mesolimbic dopamine transmission. Drug and Alcohol Dependence, 2009, 100, 265-271.	1.6	60
49	Addiction and Cognitive Functions. Annals of the New York Academy of Sciences, 2008, 1139, 299-306.	1.8	23
50	Crucial Role of Acetaldehyde in Alcohol Activation of the Mesolimbic Dopamine System. Annals of the New York Academy of Sciences, 2008, 1139, 307-317.	1.8	39
51	Key Role of Ethanolâ€Derived Acetaldehyde in the Motivational Properties Induced by Intragastric Ethanol: A Conditioned Place Preference Study in the Rat. Alcoholism: Clinical and Experimental Research, 2008, 32, 249-258.	1.4	71
52	Morphine withdrawal increases metabotropic glutamate 2/3 receptors expression in nucleus accumbens. NeuroReport, 2008, 19, 911-914.	0.6	5
53	Acetaldehyde mediates alcohol activation of the mesolimbic dopamine system. European Journal of Neuroscience, 2007, 26, 2824-2833.	1.2	91
54	Impaired decision-making in opiate-dependent subjects: Effect of pharmacological therapies. Drug and Alcohol Dependence, 2006, 83, 163-168.	1.6	131

#	Article	IF	CITATIONS
55	Persistent and Reversible Morphine Withdrawal-Induced Morphological Changes in the Nucleus Accumbens. Annals of the New York Academy of Sciences, 2006, 1074, 446-457.	1.8	50
56	Morphine withdrawal-induced morphological changes in the nucleus accumbens. European Journal of Neuroscience, 2005, 22, 2332-2340.	1.2	80
57	Is Ethanol a Pro-Drug? Acetaldehyde Contribution to Brain Ethanol Effects. Alcoholism: Clinical and Experimental Research, 2005, 29, 1514-1521.	1.4	24
58	The Dopamine Hypothesis of Drug Addiction: Hypodopaminergic State. International Review of Neurobiology, 2005, 63, 101-154.	0.9	228
59	Acetaldehyde Increases Dopaminergic Neuronal Activity in the VTA. Neuropsychopharmacology, 2004, 29, 530-536.	2.8	155
60	Ethanol Effects on Dopaminergic ???Reward??? Neurons in the Ventral Tegmental Area and the Mesolimbic Pathway. Alcoholism: Clinical and Experimental Research, 2004, 28, 1768-1778.	1.4	9
61	ACETALDEHYDE INCREASES DOPAMINERGIC NEURONAL ACTIVITY: A POSSIBLE MECHANISM FOR ACETALDEHYDE REINFORCING EFFECTS Alcoholism: Clinical and Experimental Research, 2004, 28, 82A.	1.4	0
62	EFFECTS OF CHRONIC ETHANOL AND WITHDRAWAL ON DOPAMINERGIC VENTRAL TEGMENTAL AREA NEURONS Alcoholism: Clinical and Experimental Research, 2004, 28, 71A.	1.4	0
63	Morphine withdrawal-induced abnormalities in the VTA: confocal laser scanning microscopy. European Journal of Neuroscience, 2003, 17, 605-612.	1.2	63
64	Co-release of noradrenaline and dopamine in the prefrontal cortex after acute morphine and during morphine withdrawal. Psychopharmacology, 2002, 160, 220-224.	1.5	63
65	Electrophysiological Pharmacology of Mesencephalic Dopaminergic Neurons. Handbook of Experimental Pharmacology, 2002, , 1-61.	0.9	13
66	Electrophysiological Effects of Cannabinoids in the Basal Ganglia. Advances in Behavioral Biology, 2002, , 275-296.	0.2	0
67	Clonidine fails to modify dopaminergic neuronal activity during morphine withdrawal. Psychopharmacology, 2001, 158, 1-6.	1.5	13
68	Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. European Journal of Neuroscience, 2001, 14, 96-102.	1.2	78
69	Drug Dependence as a Disorder of Neural Plasticity: Focus on Dopamine and Glutamate. Reviews in the Neurosciences, 2001, 12, 141-58.	1.4	76
70	Dissociation of Haloperidol, Clozapine, and Olanzapine Effects on Electrical Activity of Mesocortical Dopamine Neurons and Dopamine Release in the Prefrontal Cortex. Neuropsychopharmacology, 2000, 22, 642-649.	2.8	97
71	Cyclo-oxygenase-inhibitors increase morphine effects on mesolimbic dopamine neurons. European Journal of Pharmacology, 2000, 387, R1-R3.	1.7	9
72	The cyclo-oxygenase inhibitor nimesulide induces conditioned place preference in rats. European Journal of Pharmacology, 2000, 406, 75-77.	1.7	6

#	Article	IF	CITATIONS
73	Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2000, 24, 993-1006.	2.5	104
74	Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal. European Journal of Neuroscience, 1999, 11, 1037-1041.	1.2	106
75	Clozapine potently stimulates mesocortical dopamine neurons. European Journal of Pharmacology, 1999, 366, R11-R13.	1.7	26
76	Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. European Journal of Neuroscience, 1998, 10, 2825-2830.	1.2	124
77	Haloperidol does not produce dopamine cell depolarization-block in paralyzed, unanesthetized rats. Brain Research, 1998, 783, 127-132.	1.1	22
78	Clozapine does activate nigrostriatal dopamine neurons in unanesthetized rats. European Journal of Pharmacology, 1998, 363, 135-138.	1.7	8
79	In vitro excitatory actions of corticotropin-releasing factor on rat colonic motility. Autonomic and Autacoid Pharmacology, 1998, 18, 319-324.	0.7	42
80	Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. European Journal of Pharmacology, 1998, 341, 39-44.	1.7	333
81	Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10269-10273.	3.3	187
82	Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. European Journal of Neuroscience, 1998, 10, 2825-2830.	1.2	91
83	Drugs of Abuse and Dopamine Cell Activity. Advances in Pharmacology, 1997, 42, 998-1001.	1.2	13
84	Spontaneous bursting activity of dopaminergic neurons in midbrain slices from immature rats: role of N-methyl-d-aspartate receptors. Neuroscience, 1997, 77, 1029-1036.	1.1	38
85	Effects of acute, chronic ethanol and withdrawal on dorsal raphe neurons: electrophysiological studies. Neuroscience, 1997, 79, 171-176.	1.1	33
86	Mesolimbic dopaminergic reduction outlasts ethanol withdrawal syndrome: Evidence of protracted abstinence. Neuroscience, 1996, 71, 411-415.	1.1	131
87	Repeated naltrexone administration accelerates resolution of morphine somatic withdrawal signs in morphine-dependent rats. European Journal of Pharmacology, 1996, 301, R9-R10.	1.7	5
88	Chronic administration of l-sulpiride at low doses reduces A10 but not A9 somatodentritic dopamine autoreceptor sensitivity. European Journal of Pharmacology, 1996, 312, 179-181.	1.7	2
89	Dopaminergic Neurotransmission and Drug Withdrawal. Advances in Behavioral Biology, 1996, , 123-130.	0.2	4
90	Reduction of mesolimbic dopaminergic activity outlasts ethanol withdrawal syndrome in rats. Behavioural Pharmacology, 1995, 6, 90.	0.8	0

#	Article	IF	CITATIONS
91	No reduction of spontaneously active mesolimbic dopaminergic neurons in ethanol withdrawn rats. Behavioural Pharmacology, 1995, 6, 80.	0.8	0
92	Long lasting reduction of mesolimbic dopaminergic neuronal activity after morphine withdrawal. Behavioural Pharmacology, 1995, 6, 85.	0.8	3
93	Plasticity changes in dopamine autoreceptor function after chronic L-sulpiride. Behavioural Pharmacology, 1995, 6, 19.	0.8	0
94	Effects of 7-OH-DPAT on the rat mesolimbic dopaminergic system. Behavioural Pharmacology, 1995, 6, 71.	0.8	1
95	Decrease of serotoninergic neuronal activity during ethanol withdrawal syndrome in rats. Behavioural Pharmacology, 1995, 6, 89.	0.8	0
96	In vitro excitatory action of corticotropin-releasing factor on rat colonic motility. Behavioural Pharmacology, 1995, 6, 153.	0.8	0
97	Biochemical and electrophysiological effects of 7-OH-DPAT on the mesolimbic dopaminergic system. Synapse, 1995, 20, 153-155.	0.6	25
98	Ethanol withdrawal does not induce a reduction in the number of spontaneously active dopaminergic neurons in the mesolimbic system. Brain Research, 1995, 682, 29-34.	1.1	25
99	Depolarization inactivation of dopamine neurons: an artifact?. Journal of Neuroscience, 1995, 15, 1144-1149.	1.7	42
100	Central Dopaminergic Mechanisms of Alcohol and Opiate Withdrawal Syndromes. , 1995, , 19-26.		5
101	Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. Journal of Pharmacology and Experimental Therapeutics, 1995, 272, 781-5.	1.3	131
102	Failure of chronic haloperidol to induce depolarization inactivation of dopamine neurons in unanesthetized rats. European Journal of Pharmacology, 1994, 264, 449-453.	1.7	21
103	Lack of tolerance to ethanol-induced dopamine release in the rat ventral striatum. European Journal of Pharmacology, 1993, 231, 203-207.	1.7	20
104	Heterogeneous responses of substantia nigra pars reticulata neurons to Î ³ -hydroxybutyric acid administration. European Journal of Pharmacology, 1993, 230, 363-365.	1.7	9
105	Gamma-hydroxybutyric acid (GHB) for treatment of ethanol dependence. European Neuropsychopharmacology, 1993, 3, 224-225.	0.3	5
106	Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7966-7969.	3.3	283
107	Rewarding and aversive effects of ethanol: interplay of GABA, glutamate and dopamine. Alcohol and Alcoholism Supplement, 1993, 2, 315-9.	0.0	17
108	Alcohol Withdrawal in Rats Is Associated with a Marked Fall in Extraneuronal Dopamine. Alcoholism: Clinical and Experimental Research, 1992, 16, 529-532.	1.4	100

Marco Diana

#	Article	IF	CITATIONS
109	Haloperidol-induced vacuous chewing in rats: suppression by α-methyl-tyrosine. European Journal of Pharmacology, 1992, 211, 415-419.	1.7	24
110	Marked decrease of A10 dopamine neuronal firing during ethanol withdrawal syndrome in rats. European Journal of Pharmacology, 1992, 221, 403-404.	1.7	50
111	Lack of tolerance to ethanol-induced stimulation of mesolimbic dopamine system. Alcohol and Alcoholism, 1992, 27, 329-33.	0.9	34
112	Suppression of voluntary alcohol intake in rats and alcoholics by gamma-hydroxybutyric acid: a non-GABAergic mechanism. Advances in Biochemical Psychopharmacology, 1992, 47, 281-8.	0.1	14
113	Flunarizine attenuates cocaine-induced inhibition of A dopaminergic neurons. Pharmacological Research, 1991, 24, 197-203.	3.1	8
114	Modulation of dopaminergic terminal excitability by D1 selective agents: Further characterization. Neuroscience, 1991, 42, 441-449.	1.1	11
115	Low doses of γ-hydroxybutyric acid stimulate the firing rate of dopaminergic neurons in unanesthetized rats. Brain Research, 1991, 566, 208-211.	1.1	69
116	Dopamine D1 Receptors and Terminal Excitability in the Striatonigral and Nigrostriatal Systems. Advances in Behavioral Biology, 1991, , 249-258.	0.2	0
117	Calcium receptor antagonists modify cocaine effects in the central nervous system differently. European Journal of Pharmacology, 1990, 190, 217-221.	1.7	92
118	Electrophysiological analysis of dopamine cells from the substantia nigra pars compacta of circling rats. Experimental Brain Research, 1989, 74, 625-30.	0.7	53
119	Dopamine D1 heteroreceptors on striatonigral axons are not stimulated by endogeneous dopamine either tonically or after amphetamine: evidence from terminal excitability. Experimental Brain Research, 1989, 77, 161-5.	0.7	13
120	Modulation of dopaminergic terminal excitability by D1 selective agents. Neuropharmacology, 1989, 28, 99-101.	2.0	14
121	Wire electrodes for chronic single unit recording of dopamine cells in substantia nigra pars compacta of awake rats. Journal of Neuroscience Methods, 1987, 21, 71-79.	1.3	13