Dalia Barsyte-Lovejoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5535412/publications.pdf

Version: 2024-02-01

47 papers 4,791 citations

30 h-index 206102 48 g-index

57 all docs

57 docs citations

57 times ranked

6501 citing authors

#	Article	IF	CITATIONS
1	A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization. Nature Chemical Biology, 2022, 18, 56-63.	8.0	41
2	PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Reports, 2022, 38, 110582.	6.4	24
3	Validating Small Molecule Chemical Probes for Biological Discovery. Annual Review of Biochemistry, 2022, 91, 61-87.	11.1	13
4	PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biology, 2022, 51, 102282.	9.0	11
5	PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nature Chemical Biology, 2022, 18, 821-830.	8.0	43
6	Chemical biology and pharmacology of histone lysine methylation inhibitors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194840.	1.9	12
7	A First-in-Class, Highly Selective and Cell-Active Allosteric Inhibitor of Protein Arginine Methyltransferase 6. Journal of Medicinal Chemistry, 2021, 64, 3697-3706.	6.4	15
8	Discovery of Small-Molecule Antagonists of the PWWP Domain of NSD2. Journal of Medicinal Chemistry, 2021, 64, 1584-1592.	6.4	29
9	PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nature Communications, 2021, 12, 979.	12.8	77
10	Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nature Reviews Drug Discovery, 2021, 20, 509-530.	46.4	186
11	Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening. SLAS Discovery, 2021, 26, 947-960.	2.7	14
12	Structure and Function of Protein Arginine Methyltransferase PRMT7. Life, 2021, 11, 768.	2.4	8
13	Quantitative Methods to Study Protein Arginine Methyltransferase 1-9 Activity in Cells. Journal of Visualized Experiments, $2021,\ldots$	0.3	1
14	Discovery of a First-in-Class Protein Arginine Methyltransferase 6 (PRMT6) Covalent Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 5477-5487.	6.4	24
15	Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nature Communications, 2020, $11,2396$.	12.8	59
16	Selective, Small-Molecule Co-Factor Binding Site Inhibition of a Su(var)3–9, Enhancer of Zeste, Trithorax Domain Containing Lysine Methyltransferase. Journal of Medicinal Chemistry, 2019, 62, 7669-7683.	6.4	14
17	Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation. Cancer Cell, 2019, 36, 194-209.e9.	16.8	184
18	Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3. Nature Chemical Biology, 2019, 15, 822-829.	8.0	59

#	Article	IF	Citations
19	Discovery of a Potent and Selective Fragment-like Inhibitor of Methyllysine Reader Protein Spindlin 1 (SPIN1). Journal of Medicinal Chemistry, 2019, 62, 8996-9007.	6.4	20
20	Targeting protein methylation: from chemical tools to precision medicines. Cellular and Molecular Life Sciences, 2019, 76, 2967-2985.	5.4	27
21	Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nature Communications, 2019, 10, 1436.	12.8	33
22	Discovery of a chemical probe for PRDM9. Nature Communications, 2019, 10, 5759.	12.8	24
23	A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nature Communications, 2019, 10, 19.	12.8	113
24	Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression. Experimental Hematology, 2019, 69, 27-36.	0.4	5
25	LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity. ACS Medicinal Chemistry Letters, 2018, 9, 612-617.	2.8	127
26	Discovery of Potent and Selective Allosteric Inhibitors of Protein Arginine Methyltransferase 3 (PRMT3). Journal of Medicinal Chemistry, 2018, 61, 1204-1217.	6.4	27
27	TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget, 2018, 9, 18480-18493.	1.8	90
28	The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nature Chemical Biology, 2017, 13, 317-324.	8.0	98
29	The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex. Nature Chemical Biology, 2017, 13, 389-395.	8.0	186
30	Targeting human SET1/MLL family of proteins. Protein Science, 2017, 26, 662-676.	7.6	49
31	Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2. Journal of Medicinal Chemistry, 2016, 59, 4578-4600.	6.4	69
32	Discovery of a Potent, Selective, and Cell-Active Dual Inhibitor of Protein Arginine Methyltransferase 4 and Protein Arginine Methyltransferase 6. Journal of Medicinal Chemistry, 2016, 59, 9124-9139.	6.4	64
33	Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 1176-1183.	6.4	32
34	A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases. ACS Chemical Biology, 2016, 11, 772-781.	3.4	208
35	A Potent, Selective and Cellâ€Active Allosteric Inhibitor of Protein Arginine Methyltransferaseâ€3 (PRMT3). Angewandte Chemie - International Edition, 2015, 54, 5166-5170.	13.8	95
36	Pharmacological targeting of the Wdr5-MLL interaction in C/EBPÎ \pm N-terminal leukemia. Nature Chemical Biology, 2015, 11, 571-578.	8.0	227

#	Article	IF	CITATIONS
37	Discovery of a Dual PRMT5–PRMT7 Inhibitor. ACS Medicinal Chemistry Letters, 2015, 6, 408-412.	2.8	82
38	LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2. Journal of Biological Chemistry, 2015, 290, 13641-13653.	3.4	104
39	($<$ i>R $<$ i $>$)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12853-12858.	7.1	158
40	Control of the Hippo Pathway by Set7-Dependent Methylation of Yap. Developmental Cell, 2013, 26, 188-194.	7.0	130
41	Discovery of an in Vivo Chemical Probe of the Lysine Methyltransferases G9a and GLP. Journal of Medicinal Chemistry, 2013, 56, 8931-8942.	6.4	220
42	Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nature Chemical Biology, 2013, 9, 184-191.	8.0	160
43	An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chemical Biology, 2013, 8, 1324-1334.	3.4	399
44	Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nature Communications, 2012, 3, 1288.	12.8	247
45	A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nature Chemical Biology, 2011, 7, 566-574.	8.0	465
46	The c-Myc Oncogene Directly Induces the H19 Noncoding RNA by Allele-Specific Binding to Potentiate Tumorigenesis. Cancer Research, 2006, 66, 5330-5337.	0.9	451
47	c-Myc represses the proximal promoters of GADD45a and GADD153 by a post-RNA polymerase II recruitment mechanism. Oncogene, 2004, 23, 3481-3486.	5.9	55