R S Granetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5535055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of the SPARC tokamak. Journal of Plasma Physics, 2020, 86, .	2.1	181
2	Persistent density perturbations at rational-qsurfaces following pellet injection in the Joint European Torus. Physical Review Letters, 1987, 59, 2303-2306.	7.8	169
3	Nonaxisymmetric field effects on Alcator C-Mod. Physics of Plasmas, 2005, 12, 056110.	1.9	135
4	An ITPA joint experiment to study runaway electron generation and suppression. Physics of Plasmas, 2014, 21, .	1.9	71
5	A real-time machine learning-based disruption predictor in DIII-D. Nuclear Fusion, 2019, 59, 096016.	3.5	65
6	Disruption prediction investigations using Machine Learning tools on DIII-D and Alcator C-Mod. Plasma Physics and Controlled Fusion, 2018, 60, 084004.	2.1	58
7	Exploratory Machine Learning Studies for Disruption Prediction Using Large Databases on DIII-D. Fusion Science and Technology, 2018, 74, 89-100.	1.1	44
8	Formation and Stability of Impurity "Snakes―in Tokamak Plasmas. Physical Review Letters, 2013, 110, 065006.	7.8	43
9	Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks. Nuclear Fusion, 2022, 62, 042003.	3.5	37
10	MHD stability and disruptions in the SPARC tokamak. Journal of Plasma Physics, 2020, 86, .	2.1	31
11	Progress Toward Interpretable Machine Learning–Based Disruption Predictors Across Tokamaks. Fusion Science and Technology, 2020, 76, 912-924.	1.1	25
12	On the formation and stability of long-lived impurity-ion snakes in Alcator C-Mod. Nuclear Fusion, 2013, 53, 043019.	3.5	23
13	Disruption prediction on EAST tokamak using a deep learning algorithm. Plasma Physics and Controlled Fusion, 2021, 63, 115007.	2.1	23
14	An application of survival analysis to disruption prediction via Random Forests. Plasma Physics and Controlled Fusion, 2019, 61, 095009.	2.1	22
15	Advancing Fusion with Machine Learning Research Needs Workshop Report. Journal of Fusion Energy, 2020, 39, 123-155.	1.2	17
16	Modeling the complete prevention of disruption-generated runaway electron beam formation with a passive 3D coil in SPARC. Nuclear Fusion, 2021, 61, 124003.	3.5	17
17	Characterization of plasma current quench during disruption in EAST tokamak. Chinese Physics B, 2015, 24, 025205.	1.4	14
18	Scenario adaptive disruption prediction study for next generation burning-plasma tokamaks. Nuclear Fusion, 0, , .	3.5	13

R S GRANETZ

#	Article	IF	CITATIONS
19	Halo current diagnostic system of experimental advanced superconducting tokamak. Review of Scientific Instruments, 2015, 86, 103506.	1.3	9
20	Avoidance of impurity-induced current quench using lower hybrid current drive. Nuclear Fusion, 2019, 59, 066003.	3.5	6
21	Helical core formation and evolution during current ramp-up in the high-field tokamak Alcator C-Mod. Physics of Plasmas, 2019, 26, 022501.	1.9	6
22	Characterization of disruption halo current between â€W-Like' graphite divertor and â€ITER-Like' diverto structure on EAST tokamak. Plasma Physics and Controlled Fusion, 2020, 62, 095019.	^{or} 2.1	5
23	Modeling Technique to Predict Fields, Currents, and Loads for C-Mod's Advanced Outer Divertor During a Disruption With a 2.5-MA Plasma Current and 9-T Toroidal Field. IEEE Transactions on Plasma Science, 2014, 42, 568-572.	1.3	3
24	Analysis of EAST's New Tungsten Divertor and Cooling System during a Disruption with Halo Currents. Fusion Science and Technology, 2015, 68, 582-586.	1.1	3
25	Feasibility study for a high-k temperature fluctuation diagnostic based on soft x-ray imaging. Review of Scientific Instruments. 2021. 92. 053537.	1.3	1