
David Dunkerley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534891/publications.pdf Version: 2024-02-01

Πλυίο Πιινκέρι εν

#	Article	IF	CITATIONS
1	Quantifying the effects of rainfall intensity fluctuation on runoff and soil loss: From indicators to models. Journal of Hydrology, 2022, 607, 127494.	2.3	15
2	Regional Rainfall Regimes Affect the Sensitivity of the Huff Quartile Classification to the Method of Event Delineation. Water (Switzerland), 2022, 14, 1047.	1.2	3
3	Huff quartile classification of rainfall intensity profiles ('storm patterns'): A modified approach employing an intensity threshold. Catena, 2022, 216, 106371.	2.2	Ο
4	Rainfall intensity in geomorphology: Challenges and opportunities. Progress in Physical Geography, 2021, 45, 488-513.	1.4	12
5	Intermittency of rainfall at sub-daily timescales: New quantitative indices based on the number, duration, and sequencing of interruptions to rainfall. Atmospheric Research, 2021, 253, 105475.	1.8	6
6	The case for increased validation of rainfall simulation as a tool for researching runoff, soil erosion, and related processes. Catena, 2021, 202, 105283.	2.2	15
7	Rainfall drop arrival rate at the ground: A potentially informative parameter in the experimental study of infiltration, soil erosion, and related land surface processes. Catena, 2021, 206, 105552.	2.2	6
8	The importance of incorporating rain intensity profiles in rainfall simulation studies of infiltration, runoff production, soil erosion, and related landsurface processes. Journal of Hydrology, 2021, 603, 126834.	2.3	18
9	Rainfall intensity in short events: Evaluating the "l30 is equal to twice the rainfall depth―approach advised for use with the Universal Soil Loss Equation by Wischmeier & Smith (1978). Catena, 2021, 207, 105659.	2.2	4
10	The Ecohydrology of Desert Environments: What Makes it Distinctive?. , 2020, , 23-35.		2
11	How Is the Intensity of Rainfall Events Best Characterised? A Brief Critical Review and Proposed New Rainfall Intensity Index for Application in the Study of Landsurface Processes. Water (Switzerland), 2020, 12, 929.	1.2	9
12	A Review of the Effects of Throughfall and Stemflow on Soil Properties and Soil Erosion. , 2020, , 183-214.		17
13	Acquiring unbiased rainfall duration and intensity data from tipping-bucket rain gauges: A new approach using synchronised acoustic recordings. Atmospheric Research, 2020, 244, 105055.	1.8	15
14	What does 130 tell us? An assessment using high-resolution rainfall event data from two Australian locations. Catena, 2019, 180, 320-332.	2.2	13
15	How does subâ€hourly rainfall intermittency bias the climatology of hourly and daily rainfalls? Examples from arid and wet tropical Australia. International Journal of Climatology, 2019, 39, 2412-2421.	1.5	17
16	Sub-Daily Rainfall Intensity Extremes: Evaluating Suitable Indices at Australian Arid and Wet Tropical Observing Sites. Water (Switzerland), 2019, 11, 2616.	1.2	9
17	How is overland flow produced under intermittent rain? An analysis using plot-scale rainfall simulation on dryland soils. Journal of Hydrology, 2018, 556, 119-130.	2.3	29
18	An approach to analysing plot scale infiltration and runoff responses to rainfall of fluctuating intensity. Hydrological Processes, 2017, 31, 191-206.	1.1	25

DAVID DUNKERLEY

#	Article	IF	CITATIONS
19	Intraâ€event intermittency of rainfall: an analysis of the metrics of rain and noâ€rain periods. Hydrological Processes, 2015, 29, 3294-3305.	1.1	50
20	Percolation through leaf litter: What happens during rainfall events of varying intensity?. Journal of Hydrology, 2015, 525, 737-746.	2.3	49
21	Stemflow production and intrastorm rainfall intensity variation: an experimental analysis using laboratory rainfall simulation. Earth Surface Processes and Landforms, 2014, 39, 1741-1752.	1.2	29
22	Stemflow on the woody parts of plants: dependence on rainfall intensity and event profile from laboratory simulations. Hydrological Processes, 2014, 28, 5469-5482.	1.1	44
23	Nature and hydro-geomorphic roles of trees and woody debris in a dryland ephemeral stream: Fowlers Creek, arid western New South Wales, Australia. Journal of Arid Environments, 2014, 102, 40-49.	1.2	26
24	Sub-daily rainfall events in an arid environment with marked climate variability: Variation among wet and dry years at Fowlers Gap, New South Wales, Australia. Journal of Arid Environments, 2013, 96, 23-30.	1.2	15
25	Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, 2012, 26, 2211-2224.	1.1	120
26	Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrological Processes, 2008, 22, 4415-4435.	1.1	161
27	Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site. Hydrological Processes, 2008, 22, 5024-5036.	1.1	185
28	Flow chutes in Fowlers Creek, arid western New South Wales, Australia: Evidence for diversity in the influence of trees on ephemeral channel form and process. Geomorphology, 2008, 102, 232-241.	1.1	16
29	Flow threads in surface run-off: implications for the assessment of flow properties and friction coefficients in soil erosion and hydraulics investigations. Earth Surface Processes and Landforms, 2004, 29, 1011-1026.	1.2	31
30	Organic litter: dominance over stones as a source of interrill flow roughness on low-gradient desert slopes at Fowlers Gap, arid western NSW, Australia. Earth Surface Processes and Landforms, 2003, 28, 15-29.	1.2	14
31	Systematic variation of soil infiltration rates within and between the components of the vegetation mosaic in an Australian desert landscape. Hydrological Processes, 2002, 16, 119-131.	1.1	33
32	Surface tension and friction coefficients in shallow, laminar overland flows through organic litter. Earth Surface Processes and Landforms, 2002, 27, 45-58.	1.2	8
33	Volumetric displacement of flow depth by obstacles, and the determination of friction factors in shallow overland flows. Earth Surface Processes and Landforms, 2002, 27, 165-175.	1.2	8
34	Estimating the mean speed of laminar overland flow using dye injection-uncertainty on rough surfaces. Earth Surface Processes and Landforms, 2001, 26, 363-374.	1.2	77
35	Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes, 2000, 14, 669-678.	1.1	147
36	Hydrologic effects of dryland shrubs: defining the spatial extent of modified soil water uptake rates at an Australian desert site. Journal of Arid Environments, 2000, 45, 159-172.	1.2	80

#	Article	IF	CITATIONS
37	Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream. Hydrological Processes, 1999, 13, 1577-1588.	1.1	68
38	Acoustic methods in physical geography: Applications and future development. Progress in Physical Geography, 0, , 030913332211114.	1.4	1