Robert L Judson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534521/publications.pdf

Version: 2024-02-01

28 papers 3,008 citations

18 h-index

430874

28 g-index

35 all docs

35 docs citations

35 times ranked 4664 citing authors

#	Article	IF	CITATIONS
1	Loon: Using Exemplars to Visualize Large-Scale Microscopy Data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 248-258.	4.4	6
2	Molecular Biomarkers for Melanoma Screening, Diagnosis and Prognosis: Current State and Future Prospects. Frontiers in Medicine, 2021, 8, 642380.	2.6	28
3	Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Frontiers in Oncology, 2021, 11, 702287.	2.8	31
4	Human melanocyte development and melanoma dedifferentiation at single-cell resolution. Nature Cell Biology, 2021, 23, 1035-1047.	10.3	59
5	BRAFV600E induces reversible mitotic arrest in human melanocytes via microRNA-mediated suppression of AURKB. ELife, 2021, 10 , .	6.0	16
6	MicroRNA Ratios Distinguish Melanomas fromÂNevi. Journal of Investigative Dermatology, 2020, 140, 164-173.e7.	0.7	32
7	The Evolution of Melanoma – Moving beyond Binary Models of Genetic Progression. Journal of Investigative Dermatology, 2020, 140, 291-297.	0.7	7
8	The genomic landscapes of individual melanocytes from human skin. Nature, 2020, 586, 600-605.	27.8	79
9	Quantifying the Rate, Degree, and Heterogeneity of Morphological Change during an Epithelial to Mesenchymal Transition Using Digital Holographic Cytometry. Applied Sciences (Switzerland), 2020, 10, 4726.	2.5	4
10	Label-Free Classification of Apoptosis, Ferroptosis and Necroptosis Using Digital Holographic Cytometry. Applied Sciences (Switzerland), 2020, 10, 4439.	2.5	8
11	Ciliation Index Is a Useful Diagnostic Tool in Challenging Spitzoid Melanocytic Neoplasms. Journal of Investigative Dermatology, 2020, 140, 1401-1409.e2.	0.7	12
12	Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Reports, 2019, 29, 573-588.e7.	6.4	62
13	Research Techniques Made Simple: Feature SelectionÂforÂBiomarker Discovery. Journal of Investigative Dermatology, 2019, 139, 2068-2074.e1.	0.7	31
14	Evaluation of holographic imaging cytometer holomonitor M4 \hat{A}^{\otimes} motility applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 1125-1131.	1.5	14
15	Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell, 2018, 34, 56-68.e9.	16.8	113
16	Abstract 5518: Bi-allelic loss of CDKN2A initiates melanoma invasion and metastasis via E2F1-BRN2 axis. , 2018, , .		0
17	High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells. Scientific Reports, 2017, 7, 11943.	3.3	58
18	Combined activation of MAP kinase pathway and \hat{l}^2 -catenin signaling cause deep penetrating nevi. Nature Communications, 2017, 8, 644.	12.8	107

#	Article	IF	Citations
19	CDK1 Inhibition Targets the p53-NOXA-MCL1 Axis, Selectively Kills Embryonic Stem Cells, and Prevents Teratoma Formation. Stem Cell Reports, 2015, 4, 374-389.	4.8	59
20	Two miRNA Clusters Reveal Alternative Paths in Late-Stage Reprogramming. Cell Stem Cell, 2014, 14, 617-631.	11.1	74
21	microRNA Control of Mouse and Human Pluripotent Stem Cell Behavior. Annual Review of Cell and Developmental Biology, 2013, 29, 213-239.	9.4	75
22	MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nature Structural and Molecular Biology, 2013, 20, 1227-1235.	8.2	58
23	Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 443-448.	17.5	555
24	Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 2010, 463, 621-626.	27.8	641
25	miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nature Medicine, 2010, 16, 1134-1140.	30.7	180
26	Embryonic stem cell–specific microRNAs promote induced pluripotency. Nature Biotechnology, 2009, 27, 459-461.	17.5	666
27	The GP(Y/F) Domain of TF1 Integrase Multimerizes when Present in a Fragment, and Substitutions in This Domain Reduce Enzymatic Activity of the Full-length Protein. Journal of Biological Chemistry, 2008, 283, 15965-15974.	3.4	9
28	The Self Primer of the Long Terminal Repeat Retrotransposon Tf1 Is Not Removed during Reverse Transcription. Journal of Virology, 2006, 80, 8267-8270.	3.4	10