Marc A Rosen

List of Publications by Citations

Source: https://exaly.com/author-pdf/5534501/marc-a-rosen-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 16,809 481 109 h-index g-index citations papers 19,944 5.2 7.77 504 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
481	Role of exergy in increasing efficiency and sustainability and reducing environmental impact. <i>Energy Policy</i> , 2008 , 36, 128-137	7.2	442
480	District heating and cooling: Review of technology and potential enhancements. <i>Applied Energy</i> , 2012 , 93, 2-10	10.7	415
479	A review of energy storage types, applications and recent developments. <i>Journal of Energy Storage</i> , 2020 , 27, 101047	7.8	361
478	Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. <i>Energy</i> , 2011 , 36, 5886-5898	7.9	356
477	Geothermal heat pump systems: Status review and comparison with other heating options. <i>Applied Energy</i> , 2013 , 101, 341-348	10.7	347
476	Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. <i>Journal of Power Sources</i> , 2006 , 159, 1186-1193	8.9	251
475	Thermodynamic aspects of renewables and sustainable development. <i>Renewable and Sustainable Energy Reviews</i> , 2005 , 9, 169-189	16.2	247
474	Exergy as the confluence of energy, environment and sustainable development. <i>Exergy an International Journal</i> , 2001 , 1, 3-13		228
473	A critical review of photovoltaicEhermal solar collectors for air heating. <i>Applied Energy</i> , 2011 , 88, 3603-3	3 6 1547	227
472	ON EXERGY AND ENVIRONMENTAL IMPACT. International Journal of Energy Research, 1997, 21, 643-65	4 4.5	207
471	Efficiency analysis of a cogeneration and district energy system. <i>Applied Thermal Engineering</i> , 2005 , 25, 147-159	5.8	204
470	Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. <i>Energy Conversion and Management</i> , 2012 , 64, 447-453	10.6	193
469	Sustainable Manufacturing and Design: Concepts, Practices and Needs. Sustainability, 2012, 4, 154-174	3.6	192
468	Energy, environment and sustainable development. <i>Applied Energy</i> , 1999 , 64, 427-440	10.7	177
467	Understanding energy and exergy efficiencies for improved energy management in power plants. <i>Energy Policy</i> , 2007 , 35, 3967-3978	7.2	170
466	Life cycle assessment of hydrogen fuel cell and gasoline vehicles. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 337-352	6.7	170
465	Development and assessment of an integrated biomass-based multi-generation energy system. <i>Energy</i> , 2013 , 56, 155-166	7.9	168

(2014-2011)

464	Performance evaluation of a double pass PV/T solar air heater with and without fins. <i>Applied Thermal Engineering</i> , 2011 , 31, 1402-1410	5.8	168
463	Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics. <i>Energy Conversion and Management</i> , 2014 , 77, 250-261	10.6	164
462	Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1795-1805	6.7	163
461	A worldwide perspective on energy, environment and sustainable development. <i>International Journal of Energy Research</i> , 1998 , 22, 1305-1321	4.5	161
460	Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. <i>Energy</i> , 2012 , 46, 21-31	7.9	156
459	Advances in hydrogen production by thermochemical water decomposition: A review. <i>Energy</i> , 2010 , 35, 1068-1076	7.9	154
458	Exergy analysis of waste emissions. <i>International Journal of Energy Research</i> , 1999 , 23, 1153-1163	4.5	150
457	Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. <i>Energy Conversion and Management</i> , 2013 , 76, 282-300	10.6	142
456	The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. <i>Energy, Ecology and Environment</i> , 2016 , 1, 10-29	3.5	141
455	Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. <i>International Journal of Greenhouse Gas Control</i> , 2011 , 5, 1540-1549	4.2	135
454	Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. <i>International Journal of Energy Research</i> , 2016 , 40, 1011-1031	4.5	128
453	Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Conversion and Management, 2014 , 87, 318-327	10.6	127
452	Thermodynamic analysis of hydrogen production from biomass gasification. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 4970-4980	6.7	124
45 ¹	Effect of varying dead-state properties on energy and exergy analyses of thermal systems. <i>International Journal of Thermal Sciences</i> , 2004 , 43, 121-133	4.1	124
450	Exergy methods for assessing and comparing thermal storage systems. <i>International Journal of Energy Research</i> , 2003 , 27, 415-430	4.5	120
449	Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. <i>Solar Energy</i> , 2015 , 112, 290-299	6.8	117
448	Thermodynamic analysis of solar photovoltaic cell systems. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 153-159	6.4	117
447	Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system. <i>Energy</i> , 2014 , 68, 958-970	7.9	115

446	Exergy as a Driver for Achieving Sustainability. International Journal of Green Energy, 2004, 1, 1-19	3	111
445	Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems. <i>Applied Energy</i> , 2013 , 103, 700-711	10.7	108
444	Energy- and exergy-based comparison of coal-fired and nuclear steam power plants. <i>Exergy an International Journal</i> , 2001 , 1, 180-192		107
443	Energy and exergy analyses of a biomass-based hydrogen production system. <i>Bioresource Technology</i> , 2011 , 102, 8466-74	11	101
442	Exergetic life cycle assessment of hydrogen production from renewables. <i>Journal of Power Sources</i> , 2007 , 167, 461-471	8.9	101
441	Exergoeconomic analysis of double effect absorption refrigeration systems. <i>Energy Conversion and Management</i> , 2013 , 65, 13-25	10.6	99
440	Thermoeconomic analysis of a solar-biomass integrated multigeneration system for a community. <i>Applied Thermal Engineering</i> , 2017 , 120, 645-653	5.8	98
439	Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. <i>Journal of Power Sources</i> , 2017 , 363, 291-303	8.9	96
438	2010,		96
437	EXERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT 2007 , 36-59		93
437	EXERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT 2007, 36-59 Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. European Journal of Sustainable Development Research, 2018, 2,	1.6	93
	Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A	1.6	
436	Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. <i>European Journal of Sustainable Development Research</i> , 2018 , 2, Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. <i>International</i>		93
436	Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. European Journal of Sustainable Development Research, 2018, 2, Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 2016, 41, 7732-7743 Performance assessment and optimization of a novel integrated multigeneration system for	6.7	93
436 435 434	Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. European Journal of Sustainable Development Research, 2018, 2, Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 2016, 41, 7732-7743 Performance assessment and optimization of a novel integrated multigeneration system for residential buildings. Energy and Buildings, 2013, 67, 568-578 Multi-objective optimization of a novel solar-based multigeneration energy system. Solar Energy,	6. ₇	93 90 88
436 435 434 433	Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. European Journal of Sustainable Development Research, 2018, 2, Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 2016, 41, 7732-7743 Performance assessment and optimization of a novel integrated multigeneration system for residential buildings. Energy and Buildings, 2013, 67, 568-578 Multi-objective optimization of a novel solar-based multigeneration energy system. Solar Energy, 2014, 108, 576-591 Thermal performance of integrated collector storage solar water heater with corrugated absorber	6.7 7 6.8	93 90 88 86
436 435 434 433	Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. European Journal of Sustainable Development Research, 2018, 2, Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 2016, 41, 7732-7743 Performance assessment and optimization of a novel integrated multigeneration system for residential buildings. Energy and Buildings, 2013, 67, 568-578 Multi-objective optimization of a novel solar-based multigeneration energy system. Solar Energy, 2014, 108, 576-591 Thermal performance of integrated collector storage solar water heater with corrugated absorber surface. Applied Thermal Engineering, 2010, 30, 1764-1768 Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles.	6.7 7 6.8 5.8	93 90 88 86 86

(2015-2018)

A review of novel thermal management systems for batteries. <i>International Journal of Energy Research</i> , 2018 , 42, 3182-3205	4.5	81
Evaluation of wind energy potential in province of Bushehr, Iran. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 55, 455-466	16.2	80
Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 45, 87-99	16.2	78
Sectoral Energy and Exergy Modeling of Turkey. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 1997 , 119, 200-204	2.6	78
Effect of stratification on energy and exergy capacities in thermal storage systems. <i>International Journal of Energy Research</i> , 2004 , 28, 177-193	4.5	78
A comparative life cycle analysis of hydrogen production via thermochemical water splitting using a Cu I Il cycle. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 11321-11327	6.7	77
Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station. <i>Energy Conversion and Management</i> , 2003 , 44, 2743-2761	10.6	77
Hybrid solarfuel cell combined heat and power systems for residential applications: Energy and exergy analyses. <i>Journal of Power Sources</i> , 2013 , 221, 372-380	8.9	76
Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods. <i>Journal of Cleaner Production</i> , 2008 , 16, 171-177	10.3	76
Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell. <i>Energy</i> , 2015 , 89, 191-204	7.9	75
Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 20266-20275	6.7	74
Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies. <i>Entropy</i> , 2009 , 11, 820-835	2.8	72
Exergetic evaluation of the renewability of a biofuel. <i>Exergy an International Journal</i> , 2001 , 1, 256-268		71
Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. <i>Environmental Monitoring and Assessment</i> , 2013 , 185, 1847-58	3.1	70
Performance of ground heat exchangers: A comprehensive review of recent advances. <i>Energy</i> , 2019 , 178, 207-233	7.9	69
2017,		67
Integrated hydrogen production options based on renewable and nuclear energy sources. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 6059-6082	16.2	67
Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine. <i>Sustainability</i> , 2015 , 7, 2243-2255	3.6	64
	Evaluation of wind energy potential in province of Bushehr, Iran. Renewable and Sustainable Energy Reviews, 2016, 55, 455-466 Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil. Renewable and Sustainable Energy Reviews, 2015, 45, 87-99 Sectoral Energy and Exergy Modeling of Turkey. Journal of Energy Resources Technology, Transactions of the ASME, 1997, 119, 200-204 Effect of stratification on energy and exergy capacities in thermal storage systems. International Journal of Energy Research, 2004, 28, 177-193 A comparative life cycle analysis of hydrogen production via thermochemical water splitting using a Cull cycle. International Journal of Hydrogen Energy, 2011, 36, 11321-11327 Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station. Energy Conversion and Management, 2003, 44, 2743-2761 Hybrid solarfuel cell combined heat and power systems for residential applications: Energy and exergy analyses. Journal of Power Sources, 2013, 221, 372-380 Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods. Journal of Cleaner Production, 2008, 16, 171-177 Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell. Energy, 2015, 89, 191-204 Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 20266-20275 Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies. Entropy, 2009, 11, 820-835 Exergetic evaluation of the renewability of a biofuel. Exergy an International Journal, 2001, 1, 256-268 Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environmental Monitoring and Assessment, 2013, 185, 1847-58 Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 2019, 178, 207-	Evaluation of wind energy potential in province of Bushehr, Iran. Renewable and Sustainable Energy Reviews, 2016, 55, 455-466 Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil. Renewable and Sustainable Energy Reviews, 2015, 45, 87-99 Sectoral Energy and Exergy Modeling of Turkey. Journal of Energy Resources Technology, Transactions of the ASME, 1997, 119, 200-204 Effect of stratification on energy and exergy capacities in thermal storage systems. International Journal of Energy Research, 2004, 28, 177-193 A comparative life cycle analysis of hydrogen production via thermochemical water splitting using a Cutll cycle. International Journal of Hydrogen Energy, 2011, 36, 11321-11327 Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station. Energy Conversion and Management, 2003, 44, 2743-2761 Hybrid solarfuel cell combined heat and power systems for residential applications: Energy and exergy analyses. Journal of Power Sources, 2013, 221, 372-380 Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods. Journal of Cleaner Production, 2008, 16, 171-177 Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell. Energy, 2015, 89, 191-204 Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 20266-20275 Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies. Entropy, 2019, 11, 820-835 Exergetic evaluation of the renewability of a biofuel. Exergy an International Journal, 2001, 1, 256-268 Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environmental Monitoring and Assessment, 2013, 185, 1847-58 Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 2019, 79, 178,

410	Energy Sustainability: A Pragmatic Approach and Illustrations. Sustainability, 2009, 1, 55-80	3.6	64
409	Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization. <i>Journal of Cleaner Production</i> , 2020 , 258, 120780	10.3	63
408	Exergoeconoenvironmental analysis as a new concept for developing thermodynamically, economically, and environmentally sound energy conversion systems. <i>Journal of Cleaner Production</i> , 2018 , 187, 190-204	10.3	63
407	Thermodynamic analysis of a novel combined cooling, heating and power system driven by solar energy. <i>Applied Thermal Engineering</i> , 2018 , 129, 1219-1229	5.8	63
406	Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview. Sustainability, 2018, 10, 1655	3.6	63
405	Hydrogen production from coal gasification for effective downstream CO2 capture. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 4933-4943	6.7	63
404	A study of industrial steam process heating through exergy analysis. <i>International Journal of Energy Research</i> , 2004 , 28, 917-930	4.5	63
403	Energy and exergy assessments of the hydrogen production step of a coppertal lorine thermochemical water splitting cycle driven by nuclear-based heat. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 6456-6466	6.7	62
402	Artificial neural network analysis of world green energy use. Energy Policy, 2007, 35, 1731-1743	7.2	61
401	Consolidating exergoeconomic and exergoenvironmental analyses using the emergy concept for better understanding energy conversion systems. <i>Journal of Cleaner Production</i> , 2018 , 172, 696-708	10.3	60
400	Analysis and assessment of an integrated hydrogen energy system. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 7960-7967	6.7	58
399	First and second law analysis of ammonia/salt absorption refrigeration systems. <i>International Journal of Refrigeration</i> , 2014 , 40, 111-121	3.8	57
398	Examination of thermal interaction of multiple vertical ground heat exchangers. <i>Applied Energy</i> , 2012 , 97, 962-969	10.7	57
397	Energy, exergy, economic and advanced and extended exergy analyses of a wind turbine. <i>Energy Conversion and Management</i> , 2019 , 183, 369-381	10.6	56
396	Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses. <i>Sustainability</i> , 2015 , 7, 15362-15383	3.6	56
395	Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications. <i>Sustainability</i> , 2017 , 9, 1314	3.6	55
394	Sustainability aspects of hydrogen and fuel cell systems. <i>Energy for Sustainable Development</i> , 2011 , 15, 137-146	5.4	55
393	Techno-economic assessment of a renewable energy based integrated multigeneration system for green buildings. <i>Applied Thermal Engineering</i> , 2016 , 99, 1286-1294	5.8	53

(2017-2017)

392	An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids. <i>Energy</i> , 2017 , 134, 1053-1067	7.9	52	
391	Development and analysis of a new renewable energy-based multi-generation system. <i>Energy</i> , 2015 , 79, 90-99	7.9	52	
390	Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 6262-6277	6.7	52	
389	Price-driven economic order systems from a thermodynamic point of view. <i>International Journal of Production Research</i> , 2004 , 42, 5167-5184	7.8	52	
388	Appropriate Thermodynamic Performance Measures for Closed Systems for Thermal Energy Storage. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 1992 , 114, 100-105	2.3	52	
387	Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle. <i>Energies</i> , 2016 , 9, 316	3.1	52	
386	Exergy analysis of a fuel cell power system for transportation applications. <i>Exergy an International Journal</i> , 2001 , 1, 112-121		51	
385	Sensitivity of exergy efficiencies of aerospace engines to reference environment selection. <i>Exergy an International Journal</i> , 2001 , 1, 91-99		50	
384	Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination. <i>Sustainability</i> , 2020 , 12, 7996	3.6	50	
383	Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuel cell. <i>Applied Thermal Engineering</i> , 2015 , 86, 81-90	5.8	49	
382	Exergy analysis of thermal energy storage in a district energy application. <i>Renewable Energy</i> , 2015 , 74, 848-854	8.1	49	
381	Coupling of coppertal loride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 1560-	f5774	49	
380	An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency. <i>Energy Conversion and Management</i> , 2014 , 78, 184-192	10.6	48	
379	A holistic approach to sustainable development of energy, water and environment systems. <i>Journal of Cleaner Production</i> , 2017 , 155, 1-11	10.3	47	
378	Comparative environmental impact and efficiency assessment of selected hydrogen production methods. <i>Environmental Impact Assessment Review</i> , 2013 , 42, 1-9	5.3	47	
377	A comparative thermoeconomic evaluation of three biomass and biomass-natural gas fired combined cycles using organic Rankine cycles. <i>Journal of Cleaner Production</i> , 2017 , 161, 524-544	10.3	46	
376	Energy and exergy analyses of cold thermal storage systems. <i>International Journal of Energy Research</i> , 1999 , 23, 1029-1038	4.5	46	
375	Development and assessment of a novel integrated nuclear plant for electricity and hydrogen production. <i>Energy Conversion and Management</i> , 2017 , 134, 221-234	10.6	44	

374	Thermodynamic analysis and comparison of combined ejector bsorption and single effect absorption refrigeration systems. <i>Applied Energy</i> , 2014 , 133, 335-346	10.7	44
373	Thermodynamic analysis of a hybrid geothermal heat pump system. <i>Geothermics</i> , 2011 , 40, 233-238	4.3	44
372	Factors Affecting Green Entrepreneurship Intentions in Business University Students in COVID-19 Pandemic Times: Case of Ecuador. <i>Sustainability</i> , 2021 , 13, 6447	3.6	43
371	Short-term wind speed forecasting using artificial neural networks for Tehran, Iran. <i>International Journal of Energy and Environmental Engineering</i> , 2016 , 7, 377-390	4	43
370	An integrated model for designing a solar community heating system with borehole thermal storage. <i>Energy for Sustainable Development</i> , 2017 , 36, 6-15	5.4	42
369	Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy. <i>Sustainability</i> , 2014 , 6, 1796-1820	3.6	41
368	Experimental Investigation of Soil Thermal Conductivity Over a Wide Temperature Range. <i>International Journal of Thermophysics</i> , 2013 , 34, 1110-1129	2.1	41
367	Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles. <i>Electrochimica Acta</i> , 2017 , 247, 171-182	6.7	41
366	Engineering Sustainability: A Technical Approach to Sustainability. Sustainability, 2012, 4, 2270-2292	3.6	41
365	Exergetic environmental assessment of life cycle emissions for various automobiles and fuels. Exergy an International Journal, 2002 , 2, 283-294		41
364	Entropy production and exergy destruction: Part Illierarchy of Earth's major constituencies. <i>International Journal of Hydrogen Energy</i> , 2003 , 28, 1307-1313	6.7	41
363	Expectations and Interests of University Students in COVID-19 Times about Sustainable Development Goals: Evidence from Colombia, Ecuador, Mexico, and Peru. <i>Sustainability</i> , 2021 , 13, 3306	3.6	41
362	Analysis and feasibility of an evaporative cooling system with diffusion-based sessile droplet evaporation for cooling microprocessors. <i>Applied Thermal Engineering</i> , 2017 , 125, 104-110	5.8	40
361	A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles. <i>Sustainability</i> , 2014 , 6, 2474-2489	3.6	40
360	Review of underground coal gasification technologies and carbon capture. <i>International Journal of Energy and Environmental Engineering</i> , 2012 , 3, 16	4	40
359	Nuclear-based hydrogen production with a thermochemical copperthlorine cycle and supercritical water reactor: equipment scale-up and process simulation. <i>International Journal of Energy Research</i> , 2012 , 36, 456-465	4.5	40
358	Exergoeconomic analysis of a thermochemical coppertaliorine cycle for hydrogen production using specific exergy cost (SPECO) method. <i>Thermochimica Acta</i> , 2010 , 497, 60-66	2.9	40
357	An exergyflostflnergyflass analysis of a hybrid copperflhlorine thermochemical cycle for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 4831-4838	6.7	39

(2015-1988)

356	Exergy Analysis for the Evaluation of the Performance of Closed Thermal Energy Storage Systems. Journal of Solar Energy Engineering, Transactions of the ASME, 1988, 110, 255-261	2.3	39
355	Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu [] cycles. <i>Journal of Cleaner Production</i> , 2012 , 33, 202-216	10.3	38
354	Efficiency comparison of various design schemes for coppertallorine (Cult) hydrogen production processes using Aspen Plus software. <i>Energy Conversion and Management</i> , 2012 , 63, 70-86	10.6	38
353	Integrated collector-storage solar water heater with extended storage unit. <i>Applied Thermal Engineering</i> , 2011 , 31, 348-354	5.8	38
352	Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries. <i>Energy</i> , 2020 , 208, 118347	7.9	38
351	Heat and mass transfer modeling and assessment of a new battery cooling system. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 126, 765-778	4.9	38
350	Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities. <i>Energy</i> , 2017 , 141, 792-802	7.9	37
349	Development of a four-step Cull cycle for hydrogen production Part I: Exergoeconomic and exergoenvironmental analyses. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 7814-7825	6.7	37
348	Aerospace systems and exergy analysis: applications and methodology development needs. <i>International Journal of Exergy</i> , 2004 , 1, 411	1.2	37
347	Thermodynamic Optimization of a Geothermal Power Plant with a Genetic Algorithm in Two Stages. <i>Processes</i> , 2020 , 8, 1277	2.9	37
346	The oxygen production step of a coppertiblorine thermochemical water decomposition cycle for hydrogen production: Energy and exergy analyses. <i>Chemical Engineering Science</i> , 2009 , 64, 860-869	4.4	36
345	Environmental evaluation of hydrogen production via thermochemical water splitting using the Cull Cycle: A parametric study. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9514-9528	6.7	35
344	Optimum conditions for a natural gas combined cycle power generation system based on available oxygen when using biomass as supplementary fuel. <i>Energy</i> , 2009 , 34, 816-826	7.9	35
343	Sustainable development of energy, water and environment systems for future energy technologies and concepts. <i>Energy Conversion and Management</i> , 2016 , 125, 1-14	10.6	34
342	Influence of Technostress on Academic Performance of University Medicine Students in Peru during the COVID-19 Pandemic. <i>Sustainability</i> , 2021 , 13, 8949	3.6	34
341	Modeling and optimal design of an off-grid hybrid system for electricity generation using various biodiesel fuels: a case study for Davarzan, Iran. <i>Biofuels</i> , 2016 , 7, 699-712	2	33
340	A comparative study of the performance characteristics of double-effect absorption refrigeration systems. <i>International Journal of Energy Research</i> , 2012 , 36, 182-192	4.5	33
339	A new model to assess the environmental impact and sustainability of energy systems. <i>Journal of Cleaner Production</i> , 2015 , 103, 211-218	10.3	32

338	Thermodynamic Performance of Ice Thermal Energy Storage Systems. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2000 , 122, 205-211	2.6	32
337	A novel approach for performance improvement of liquid to vapor based battery cooling systems. Energy Conversion and Management, 2019 , 187, 191-204	10.6	31
336	Comparative life cycle assessment of hydrogen and other selected fuels. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 9933-9940	6.7	31
335	Comparison of molten salt heat recovery options in the Cu I Il cycle of hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 11328-11337	6.7	31
334	A novel phase change based cooling system for prismatic lithium ion batteries. <i>International Journal of Refrigeration</i> , 2018 , 86, 203-217	3.8	31
333	A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance. <i>Sustainability</i> , 2018 , 10, 4486	3.6	31
332	Analysis and assessment of a hydrogen production plant consisting of coal gasification, thermochemical water decomposition and hydrogen compression systems. <i>Energy Conversion and Management</i> , 2018 , 157, 600-618	10.6	30
331	Sustainable development of energy systems. <i>Energy Conversion and Management</i> , 2014 , 87, 1057-1062	10.6	30
330	Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2015 , 137,	2.3	30
329	Thermodynamic analysis of the copper production step in a copperdhlorine cycle for hydrogen production. <i>Thermochimica Acta</i> , 2008 , 480, 22-29	2.9	30
328	Production of hydrogen-rich syngas from novel processes for gasification of petroleum cokes and coals. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 11577-11592	6.7	30
327	Techno-economic assessment of a solar-geothermal multigeneration system for buildings. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 21454-21462	6.7	28
326	Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 7601-7608	6.7	28
325	Advanced exergy and advanced exergoeconomic analyses of biomass and natural gas fired combined cycles with hydrogen production. <i>Applied Thermal Engineering</i> , 2018 , 134, 1-11	5.8	28
324	Efficiency analysis of a hybrid copperthlorine (Cuttl) cycle for nuclear-based hydrogen production. <i>Chemical Engineering Journal</i> , 2009 , 155, 132-137	14.7	28
323	Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 4788-4807	6.7	28
322	A thermal performance management system for lithium-ion battery packs. <i>Applied Thermal Engineering</i> , 2020 , 165, 114378	5.8	28
321	Biomass gasification using various gasification agents: Optimum feedstock selection, detailed numerical analyses and tri-objective grey wolf optimization. <i>Journal of Cleaner Production</i> , 2021 , 284, 124718	10.3	28

320	Performance analysis of a supercritical water-cooled nuclear reactor integrated with a combined cycle, a Cu-Cl thermochemical cycle and a hydrogen compression system. <i>Applied Energy</i> , 2017 , 195, 646-	165 7	27	
319	Thermodynamic analysis of a novel multigeneration energy system based on heat recovery from a biomass CHP cycle. <i>Applied Thermal Engineering</i> , 2015 , 89, 90-100	5.8	27	
318	Comparative assessment of CANDU 6 and Sodium-cooled Fast Reactors for nuclear desalination. <i>Desalination</i> , 2016 , 379, 182-192	10.3	27	
317	Development of new heat exchanger network designs for a four-step Cu I I cycle for hydrogen production. <i>Energy</i> , 2014 , 77, 338-351	7.9	27	
316	Application of sliding window technique for prediction of wind velocity time series. <i>International Journal of Energy and Environmental Engineering</i> , 2014 , 5, 1	4	27	
315	Analytical approximation for solidification processes in PCM storage with internal fins: imposed heat flux. <i>Heat and Mass Transfer</i> , 2011 , 47, 369-376	2.2	27	
314	Performance analysis of gas liquefaction cycles. International Journal of Energy Research, 2008, 32, 35-43	4.5	27	
313	Clarifying thermodynamic efficiencies and losses via exergy. <i>Exergy an International Journal</i> , 2002 , 2, 3-5		27	
312	A New Regulation for Supporting a Circular Economy in the Plastic Industry: The Case of Peru (Short Communication). <i>Journal of Landscape Ecology(Czech Republic)</i> , 2020 , 13, 1-3	1.2	27	
311	Integrated approach for sustainable development of energy, water and environment systems. Energy Conversion and Management, 2018, 159, 398-412	10.6	26	
310	Energy, exergy, economic, exergoeconomic, and exergoenvironmental (5E) analyses of a triple cycle with carbon capture. <i>Journal of CO2 Utilization</i> , 2020 , 41, 101258	7.6	26	
309	Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. <i>Energy Technology</i> , 2019 , 7, 18010	1 3 1 5	26	
308	Performance assessment of a new hydrogen cooled prismatic battery pack arrangement for hydrogen hybrid electric vehicles. <i>Energy Conversion and Management</i> , 2018 , 173, 303-319	10.6	25	
307	Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study. <i>Sustainability</i> , 2014 , 6, 2506-2526	3.6	25	
306	Exergetic life cycle assessment of a hydrogen production process. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 5665-5675	6.7	25	
305	Development of a four-step Cu I Il cycle for hydrogen production Part II : Multi-objective optimization. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 7826-7834	6.7	25	
304	Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production. <i>Energy</i> , 2019 , 167, 715-729	7.9	25	
303	Exergoeconomic analysis of natural gas fired and biomass post-fired combined cycle with hydrogen injection into the combustion chamber. <i>Journal of Cleaner Production</i> , 2018 , 180, 450-465	10.3	24	

302	Noise Pollution Prevention in Wind Turbines: Status and Recent Advances. Sustainability, 2012, 4, 1104-	131.67	24
301	Design of systems for hydrogen production based on the Cu I I thermochemical water decomposition cycle: Configurations and performance. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 11309-11320	6.7	24
300	Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province. <i>Energy for Sustainable Development</i> , 2009 , 13, 43-51	5.4	24
299	Combating global warming via non-fossil fuel energy options. <i>International Journal of Global Warming</i> , 2009 , 1, 2	0.6	24
298	Can exergy help us understand and address environmental concerns?. <i>Exergy an International Journal</i> , 2002 , 2, 214-217		24
297	Technoeconomic and environmental optimization of a solar tower integrated energy system for freshwater production. <i>Journal of Cleaner Production</i> , 2020 , 270, 121760	10.3	24
296	Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations. <i>Geothermics</i> , 2017 , 69, 132-138	4.3	23
295	A review of hydrogen production using coal, biomass and other solid fuels. <i>Biofuels</i> , 2017 , 8, 725-745	2	23
294	Effects of various gasification parameters and operating conditions on syngas and hydrogen production. <i>Chemical Engineering Research and Design</i> , 2016 , 115, 1-18	5.5	23
293	Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification. Journal of Energy Resources Technology, Transactions of the ASME, 2018 , 140,	2.6	23
292	Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System. <i>Sustainability</i> , 2012 , 4, 462-490	3.6	23
291	From rice husk to high performance shape stabilized phase change materials for thermal energy storage. <i>RSC Advances</i> , 2016 , 6, 45595-45604	3.7	23
290	Thermodynamic viability of a new three step high temperature Cu-Cl cycle for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 18783-18789	6.7	23
289	Development and assessment of a new solar heliostat field based system using a thermochemical water decomposition cycle integrated with hydrogen compression. <i>Solar Energy</i> , 2017 , 151, 186-201	6.8	22
288	Comparative assessment of new liquid-to-vapor type battery cooling systems. <i>Energy</i> , 2019 , 188, 11601	0 7.9	22
287	Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto, Canada. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 7846-7854	6.7	22
286	Exergy, Economic and Environmental Analysis for Simple and Combined Heat and Power IC Engines. <i>Sustainability</i> , 2015 , 7, 4411-4424	3.6	22
285	Life Cycle Assessment of Hydrogen Production Using Nuclear Energy: An Application Based on Thermochemical Water Splitting. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2010 , 132.	2.6	22

284	Coastal Cities Seen from Loyalty and Their Tourist Motivations: A Study in Lima, Peru. <i>Sustainability</i> , 2021 , 13, 11575	3.6	22
283	Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle. <i>Sustainability</i> , 2016 , 8, 1079	3.6	22
282	Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications. <i>Applied Thermal Engineering</i> , 2015 , 89, 833-842	5.8	21
281	Comparison of gas turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses. <i>Energy Conversion and Management</i> , 2020 , 216, 11	2944 ⁶	21
280	Application of multivariate geostatistics in the investigation of heavy metal contamination of roadside dusts from selected highways of the Greater Toronto Area, Canada. <i>Environmental Earth Sciences</i> , 2014 , 71, 1409-1419	2.9	21
279	Comparative performance evaluation of cascaded air-source hydronic heat pumps. <i>Energy Conversion and Management</i> , 2015 , 89, 577-587	10.6	20
278	Deriving an exergetic economic production quantity model for better sustainability. <i>Applied Mathematical Modelling</i> , 2016 , 40, 6026-6039	4.5	20
277	Exergoeconomic analysis of a biomass post-firing combined-cycle power plant. <i>Energy</i> , 2014 , 77, 553-5	61 7.9	20
276	Natural and Artificial Methods for Regeneration of Heat Resources for Borehole Heat Exchangers to Enhance the Sustainability of Underground Thermal Storages: A Review. <i>Sustainability</i> , 2015 , 7, 1310	04 ³ t312	25 ²⁰
275	Effect of supplementary firing options on cycle performance and CO2 emissions of an IGCC power generation system. <i>International Journal of Energy Research</i> , 2009 , 33, 645-661	4.5	20
274	Energy and exergy analyses of the drying step of a copper-chlorine thermochemical cycle for hydrogen production. <i>International Journal of Exergy</i> , 2009 , 6, 793	1.2	20
273	Performance assessment of a combined system to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle for hydrogen production. <i>Energy Conversion and Management</i> , 2008 , 49, 1873-1881	10.6	20
272	Critical Review of Exergy-Based Indicators for the Environmental Impact of Emissions. <i>International Journal of Green Energy</i> , 2008 , 5, 87-104	3	20
271	Air pollution reduction via use of green energy sources for electricity and hydrogen production. <i>Atmospheric Environment</i> , 2007 , 41, 1777-1783	5.3	20
270	Thermodynamic assessment of an integrated system for cogeneration and district heating and cooling. <i>International Journal of Exergy</i> , 2004 , 1, 94	1.2	20
269	Advances in integration of energy, water and environment systems towards climate neutrality for sustainable development. <i>Energy Conversion and Management</i> , 2020 , 225, 113410	10.6	20
268	Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach. <i>Renewable Energy</i> , 2019 , 143, 569-585	8.1	19
267	Techno-economic assessment of hybrid renewable resources for a residential building in tehran. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, 13209	2.5	19

266	Accounting for Individual Differences in Connectedness to Nature: Personality and Gender Differences. <i>Sustainability</i> , 2019 , 11, 1693	3.6	19
265	A novel state of charge and capacity estimation technique for electric vehicles connected to a smart grid based on inverse theory and a metaheuristic algorithm. <i>Energy</i> , 2018 , 155, 1047-1058	7.9	19
264	Modeling and performance assessment of a new integrated gasification combined cycle with a water gas shift membrane reactor for hydrogen production. <i>Computers and Chemical Engineering</i> , 2017 , 103, 275-292	4	19
263	Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration. <i>Sustainability</i> , 2015 , 7, 14259-14286	3.6	19
262	Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: a new approach for sustainable hydrogen production via copperInlorine thermochemical cycles. <i>International Journal of Energy Research</i> , 2012 , 36, 1388-1394	4.5	19
261	Energy, exergy and sustainability analyses of Bangladesh power generation sector. <i>Energy Reports</i> , 2020 , 6, 868-878	4.6	19
260	Economic and environmental assessment using emergy of a geothermal power plant. <i>Energy Conversion and Management</i> , 2021 , 228, 113666	10.6	19
259	Wind resource assessment and wind power potential for the city of Ardabil, Iran. <i>International Journal of Energy and Environmental Engineering</i> , 2015 , 6, 431-438	4	18
258	Electricity price forecasting using neural networks with an improved iterative training algorithm. <i>International Journal of Ambient Energy</i> , 2018 , 39, 147-158	2	18
257	A Review of the Modelling of Thermally Interacting Multiple Boreholes. Sustainability, 2013, 5, 2519-253	36 .6	18
256	Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production. <i>Journal of Power and Energy Systems</i> , 2008 , 2, 756-767		18
255	Effect of altering combustion air flow on a steam power plant: energy and exergy analysis. <i>International Journal of Energy Research</i> , 2007 , 31, 219-231	4.5	18
254	Performance analysis of a photovoltaic/wind/diesel hybrid power generation system for domestic utilization in winnipeg, manitoba, canada. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, 548-	· 5 62	18
253	Development and evaluation of a new ammonia boiling based battery thermal management system. <i>Electrochimica Acta</i> , 2018 , 280, 340-352	6.7	18
252	Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles. <i>Sustainability</i> , 2019 , 11, 3374	3.6	17
251	Comparative study of solar-powered underfloor heating system performance in distinctive climates. <i>Renewable Energy</i> , 2019 , 130, 524-535	8.1	17
250	Energy analysis of thermal energy storages with grid configurations. <i>Applied Energy</i> , 2014 , 117, 54-61	10.7	17
249	Utilizing hydrogen energy to reduce greenhouse gas emissions in Canada's residential sector. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 1631-1637	6.7	17

(2008-2009)

248	Energy and exergy analyses of the fluidized bed of a copperthlorine cycle for nuclear-based hydrogen production via thermochemical water decomposition. <i>Chemical Engineering Research and Design</i> , 2009 , 87, 684-694	5.5	17	
247	Exergy analysis of a hybrid solar hydrogen system with activated carbon storage. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 3273-3282	6.7	17	
246	New Spatio-Temporal Wind Exergy Maps. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2006 , 128, 194-202	2.6	17	
245	Does industry embrace exergy?. Exergy an International Journal, 2002, 2, 221-223		17	
244	Techno-economic feasibility analysis of stand-alone hybrid wind/photovoltaic/diesel/battery system for the electrification of remote rural areas: Case study Persian Gulf Coast-Iran. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, 13172	2.5	16	
243	Carbon dioxide emissions prediction of five Middle Eastern countries using artificial neural networks. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2019 , 1-13	1.6	16	
242	Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm. <i>Sustainability</i> , 2015 , 7, 11679-11695	3.6	16	
241	An enviro-economic function for assessing energy resources for district energy systems. <i>Energy</i> , 2014 , 70, 159-164	7.9	16	
240	Engineering and Sustainability: Attitudes and Actions. Sustainability, 2013, 5, 372-386	3.6	16	
239	Comparative performance investigation of integrated collector-storage solar water heaters with various heat loss reduction strategies. <i>International Journal of Energy Research</i> , 2011 , 35, 1179-1187	4.5	16	
238	Integration of transportation energy processes with a net zero energy community using captured waste hydrogen from electrochemical plants. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 8337-8	3 4 6	16	
237	Assessment and analysis of hydrogen and electricity production from a Generation IV lead-cooled nuclear reactor integrated with a copper-chlorine thermochemical cycle. <i>International Journal of Energy Research</i> , 2018 , 42, 91-103	4.5	16	
236	Evaluation of temperature profiling quality in determining energy efficiencies of borehole heat exchangers. <i>Geothermics</i> , 2019 , 78, 129-137	4.3	15	
235	Analysis and assessment of the integrated generation IV gas-cooled fast nuclear reactor and copper-chlorine cycle for hydrogen and electricity production. <i>Energy Conversion and Management</i> , 2020 , 205, 112387	10.6	15	
234	Direct contact heat transfer from molten salt droplets in a thermochemical water splitting process of hydrogen production. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 96, 125-131	4.9	15	
233	Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle. <i>Sustainability</i> , 2019 , 11, 3264	3.6	15	
232	Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers. <i>Energies</i> , 2017 , 10, 532	3.1	15	
231	Exergoeconomic analysis of glycol cold thermal energy storage systems. <i>International Journal of Energy Research</i> , 2008 , 32, 215-225	4.5	15	

230	Analysis and Assessment of a Gas Turbine-Modular Helium Reactor for Nuclear Desalination. <i>Journal of Nuclear Engineering and Radiation Science</i> , 2016 , 2,	1.1	14
229	Using Exergy to Assess Regional and National Energy Utilization: A Comparative Review. <i>Arabian Journal for Science and Engineering</i> , 2013 , 38, 251-261		14
228	Assessing global resource utilization efficiency in the industrial sector. <i>Science of the Total Environment</i> , 2013 , 461-462, 804-7	10.2	14
227	Exergy and industrial ecology: an application to an integrated energy system. <i>International Journal of Exergy</i> , 2008 , 5, 52	1.2	14
226	Energy and exergy analyses of PFBC power plants 1995 , 419-448		14
225	Development and analysis of an integrated system with direct splitting of hydrogen sulfide for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 20036-20062	6.7	14
224	Transient thermodynamic analysis of a novel integrated ammonia production, storage and hydrogen production system. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 18214-18224	6.7	13
223	Heat transfer modeling of a novel battery thermal management system. <i>Numerical Heat Transfer; Part A: Applications</i> , 2018 , 73, 277-290	2.3	13
222	Using Exergy to Correlate Energy Research Investments and Efficiencies: Concept and Case Studies. <i>Entropy</i> , 2013 , 15, 262-286	2.8	13
221	A Methodology for Assessing the Sustainability of Hydrogen Production from Solid Fuels. <i>Sustainability</i> , 2010 , 2, 1472-1491	3.6	13
220	Use of low grade heat sources in combined ejectordouble effect absorption refrigeration systems. <i>Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy</i> , 2012 , 226, 607-622	1.6	13
219	Entropy production and exergy destruction: Part IIIllustrative technologies. <i>International Journal of Hydrogen Energy</i> , 2003 , 28, 1315-1323	6.7	13
218	How Can We Achieve the UN Sustainable Development Goals?. <i>European Journal of Sustainable Development Research</i> , 2017 , 1,	1.6	13
217	Use of Oil Boreholes in the Carpathians in Geoenergetic Systems: Historical and Conceptual Review. <i>Research Journal of Environmental Sciences</i> , 2014 , 8, 231-242	Ο	13
216	Net-Zero Energy Buildings and Communities: Potential and the Role of Energy Storage. <i>Journal of Power and Energy Engineering</i> , 2015 , 03, 470-474	0.7	13
215	Exergoeconomic and thermodynamic analyses of an externally fired combined cycle with hydrogen production and injection to the combustion chamber. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 781-792	6.7	13
214	A comparative exergoeconomic evaluation of biomass post-firing and co-firing combined power plants. <i>Biofuels</i> , 2017 , 8, 1-15	2	12
213	Energy and Cost Analysis and Optimization of a Geothermal-Based Cogeneration Cycle Using an Ammonia-Water Solution: Thermodynamic and Thermoeconomic Viewpoints. <i>Sustainability</i> , 2020 , 12, 484	3.6	12

(2004-2013)

212	Ground source heat pumps for heating: Parametric energy analysis of a vapor compression cycle utilizing an economizer arrangement. <i>Applied Thermal Engineering</i> , 2013 , 52, 245-254	5.8	12
211	Development of an integrated system for electricity and hydrogen production from coal and water utilizing a novel chemical hydrogen storage technology. <i>Fuel Processing Technology</i> , 2017 , 167, 608-621	7.2	12
210	Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles. <i>Sustainability</i> , 2015 , 7, 1248-1262	3.6	12
209	Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling. <i>Sustainability</i> , 2015 , 7, 12236-12257	3.6	12
208	Partial substitution of hydrogen for conventional fuel in an aircraft by utilizing unused cargo compartment space. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 1463-1473	6.7	12
207	Energy Sustainability with a Focus on Environmental Perspectives. <i>Earth Systems and Environment</i> , 2021 , 5, 1-14	7.5	12
206	On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids. <i>Energy</i> , 2021 , 225, 120304	7.9	12
205	Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches. <i>Energy</i> , 2021 , 228, 120613	7.9	12
204	Conventional and enhanced thermodynamic and exergoeconomic analyses of a photovoltaic combined cycle with biomass post firing and hydrogen production. <i>Applied Thermal Engineering</i> , 2019 , 160, 113996	5.8	11
203	On Thermally Interacting Multiple Boreholes with Variable Heating Strength: Comparison between Analytical and Numerical Approaches. <i>Sustainability</i> , 2012 , 4, 1848-1866	3.6	11
202	Some Sustainability Aspects of Energy Conversion in Urban Electric Trains. Sustainability, 2010, 2, 1389-	13467	11
201	The roles of science and technology in energy and environment research and development. <i>International Journal of Energy Research</i> , 2001 , 25, 1165-1187	4.5	11
200	Sustainable Development: A Vital Quest. <i>European Journal of Sustainable Development Research</i> , 2017 , 1,	1.6	11
199	Two-phase bubble flow and convective mass transfer in water splitting processes. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 4047-4055	6.7	10
198	Design and simulation of a UOIT copperIlhlorine cycle for hydrogen production. <i>International Journal of Energy Research</i> , 2013 , 37, 1160-1174	4.5	10
197	Life cycle assessment of nuclear-based hydrogen production via a copperInlorine cycle: A neural network approach. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 6314-6322	6.7	10
196	Optimization of seasonal storage for community-level energy systems: status and needs. <i>Energy, Ecology and Environment</i> , 2017 , 2, 169-181	3.5	10
195	Energy Considerations in Design for Environment: Appropriate Energy Selection and Energy Efficiency. <i>International Journal of Green Energy</i> , 2004 , 1, 21-45	3	10

194	Exergetic Efficiencies and the Exergy Content of Terrestrial Solar Radiation. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2004 , 126, 673-676	2.3	10
193	Assessment of a novel phase change material-based thermal caisson for geothermal heating and cooling. <i>Energy Conversion and Management</i> , 2021 , 234, 113928	10.6	10
192	Heat Transfer and Thermodynamic Analyses of a Novel Solid©as Thermochemical Strontium ChlorideAmmonia Thermal Energy Storage System. <i>Journal of Heat Transfer</i> , 2018 , 140,	1.8	10
191	Investigation of new mechanical heat pump systems for heat upgrading applications. <i>International Journal of Energy Research</i> , 2018 , 42, 3078-3090	4.5	9
190	Co-production of Hydrogen and Copper from Copper Waste Using a Thermochemical Cu I I Cycle. <i>Energy & Copper Fuels</i> , 2018 , 32, 2137-2144	4.1	9
189	Long-term study of vertical ground heat exchangers with varying seasonal heat fluxes. <i>Geothermics</i> , 2018 , 75, 15-25	4.3	9
188	Multi-objective optimization of an integrated gasification combined cycle for hydrogen and electricity production. <i>Computers and Chemical Engineering</i> , 2018 , 117, 256-267	4	9
187	Thermodynamic analysis and the design of sensible thermal energy storages. <i>International Journal of Energy Research</i> , 2017 , 41, 39-48	4.5	9
186	Three-Dimensional Analysis of the Thermal Interaction of Multiple Vertical Ground Heat Exchangers. <i>International Journal of Green Energy</i> , 2015 , 12, 1144-1150	3	9
185	Process simulation and analysis of a five-step copperthlorine thermochemical water decomposition cycle for sustainable hydrogen production. <i>International Journal of Energy Research</i> , 2014 , 38, 1391-1402	4.5	9
184	Assessment of emissions at busy airports. <i>International Journal of Energy Research</i> , 2009 , 34, 800-814	4.5	9
183	Assessing and improving the efficiencies of a steam power plant using exergy analysis. Part 2: improvements from modifying reheat pressure. <i>International Journal of Exergy</i> , 2006 , 3, 377	1.2	9
182	Assessing and improving the efficiencies of a steam power plant using exergy analysis. Part 1: assessment. <i>International Journal of Exergy</i> , 2006 , 3, 362	1.2	9
181	On the thermodynamic treatment of diffusion-like economic commodity flows. <i>International Journal of Exergy</i> , 2006 , 3, 103	1.2	9
180	Exergy analysis of a pistachio roasting system. <i>Drying Technology</i> , 2020 , 38, 1565-1583	2.6	9
179	Cashew Nut Shell Liquid as a Fuel for Compression Ignition Engines: A Comprehensive Review. <i>Energy & Energy & </i>	4.1	9
178	A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers. <i>Energies</i> , 2019 , 12, 1072	3.1	8
177	Techno-economic feasibility of building attached photovoltaic systems for the various climatic conditions of Iran. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, e13239	2.5	8

(2015-2018)

176	Model development and analysis of a novel high-temperature electrolyser for gas phase electrolysis of hydrogen chloride for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 9112-9118	6.7	8	
175	Kinetic and electrochemical analyses of a CuCI/HCl electrolyzer. <i>International Journal of Energy Research</i> , 2019 , 43, 6890	4.5	8	
174	Indirect contact heat recovery with solidification in thermochemical hydrogen production. <i>Energy Conversion and Management</i> , 2014 , 82, 212-218	10.6	8	
173	Estimation of vertical and horizontal distribution of takeoff and climb NOx emission for commercial aircraft. <i>Energy Conversion and Management</i> , 2013 , 76, 121-127	10.6	8	
172	Assessment of the Thermal Energy Storage in Friedrichshafen District Energy Systems. <i>Energy Procedia</i> , 2017 , 116, 91-105	2.3	8	
171	Exergy conservation: An alternative to conserving the already conserved quantity energy. <i>Exergy an International Journal</i> , 2002 , 2, 59-61		8	
170	Energy crisis or exergy crisis?. Exergy an International Journal, 2002, 2, 125-127		8	
169	Exergy Analysis of Green Energy Systems 2011 , 17-65		8	
168	An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation. <i>Energy</i> , 2021 , 214, 118949	7.9	8	
167	Factors for Implementation of Circular Economy in Firms in COVID-19 Pandemic Times: The Case of Peru. <i>Environments - MDPI</i> , 2021 , 8, 95	3.2	8	
166	Combustion, performance, and emissions of a compression ignition engine using Pongamia biodiesel and bioethanol. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 8069-8079	5.1	7	
165	Using exergy to assess air pollution levels from a smokestack Part 1: methodology. <i>International Journal of Exergy</i> , 2008 , 5, 375	1.2	7	
164	Empirical Comparison of Temperature-Distribution Models for Energy and Exergy Analyses of Stratified Thermal Energy Storages. <i>International Journal of Green Energy</i> , 2006 , 3, 291-307	3	7	
163	EVALUATION OF THE HEAT LOSS FROM PARTIALLY BURIED, BERMED THERMAL ENERGY STORAGE TANKS. <i>International Journal of Solar Energy</i> , 1990 , 9, 147-162		7	
162	An Exploratory Study of a New Psychological Instrument for Evaluating Sustainability: The Sustainable Development Goals Psychological Inventory. <i>Sustainability</i> , 2020 , 12, 7617	3.6	7	
161	Exergy Analysis as a Tool for Addressing Climate Change. <i>European Journal of Sustainable Development Research</i> , 2021 , 5, em0148	1.6	7	
160	Assessment of a biomass-based polygeneration plant for combined power, heat, bioethanol and biogas. <i>Applied Thermal Engineering</i> , 2021 , 198, 117425	5.8	7	
159	Exergy Analysis of a Biomass Co-Firing Based Pulverized Coal Power Generation System. International Journal of Green Energy, 2015, 12, 461-478	3	6	

158	First and Second Law Analyses of Trans-critical N2O Refrigeration Cycle Using an Ejector. <i>Sustainability</i> , 2018 , 10, 1177	3.6	6
157	EFFICIENCY ASSESSMENT OF GLYCOL COLD THERMAL ENERGY STORAGE AND EFFECT OF VARYING ENVIRONMENT TEMPERATURE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2009 , 33, 119-130	1.1	6
156	Size considerations in applications of exergy analysis. <i>International Journal of Exergy</i> , 2008 , 5, 249	1.2	6
155	An Exergy-Based Method for Allocating Carbon Dioxide Emissions from Cogeneration Systems - Part I: Comparison with Other Methods 2006 ,		6
154	Economic Aspects of Greenhouse Gas Emissions Reduction by Utilisation of Wind and Solar Energies to Produce Electricity and hydrogen 2006 ,		6
153	Environmental and Health Benefits of Utility-Based Cogeneration in Ontario, Canada. <i>Energy and Environment</i> , 1994 , 5, 363-378	2.4	6
152	Assessment of the Potential Cumulative Benefits of Applying Utility-based Cogeneration in Ontario. <i>Energy Studies Review</i> , 2014 , 6,	O	6
151	A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments. <i>European Journal of Sustainable Development Research</i> , 2020 , 4, em0138	1.6	6
150	A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization. <i>Sustainability</i> , 2021 , 13, 6448	3.6	6
149	Development and analysis of a new tube based cylindrical battery cooling system with liquid to vapor phase change. <i>International Journal of Refrigeration</i> , 2019 , 108, 163-173	3.8	5
148	Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River. <i>Sustainability</i> , 2015 , 7, 5920-5943	3.6	5
147	Reduction of hazards from copper(I) chloride in a Cu-Cl thermochemical hydrogen production plant. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 48-56	12.8	5
146	Environmental impact assessment of nuclear assisted hydrogen production via Cull thermochemical cycles. <i>Sustainable Cities and Society</i> , 2013 , 7, 16-24	10.1	5
145	Exergoeconomic Analysis of a Residential Hybrid PV-Fuel Cell-Battery System. Fuel Cells, 2013, 13, n/a-r	n /a 9	5
144	Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts. <i>Sustainability</i> , 2013 , 5, 1161-1176	3.6	5
143	Improving the Sustainability of Office Partition Manufacturing: Balancing Options for Reducing Emissions of Volatile Organic Compounds. <i>Sustainability</i> , 2009 , 1, 234-253	3.6	5
142	Application of temperature-distribution models to evaluate the energy and exergy of stratified thermal storages. <i>International Journal of Exergy</i> , 2006 , 3, 239	1.2	5
141	Syngas-fed membrane-based and steam and water-fed electrolysis-based hydrogen production systems: Renewability, sustainability, environmental and economic analyses and optimization. <i>Journal of Cleaner Production</i> , 2021 , 326, 129424	10.3	5

(2015-2016)

140	Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery. <i>Sustainability</i> , 2016 , 8, 267	3.6	5
139	Transient Energy and Exergy Analyses of a Multistage Hydrogen Compression and Storage System. <i>Chemical Engineering and Technology</i> , 2018 , 41, 1594-n/1603	2	5
138	Integrated solar thermal systems in smart optimized zero energy buildings: Energy, environment and economic assessments. <i>Sustainable Energy Technologies and Assessments</i> , 2021 , 48, 101580	4.7	5
137	Towards a better understanding of energy systems using emergy-based exergoeconoenvironmental analysis. <i>International Journal of Exergy</i> , 2019 , 28, 209	1.2	4
136	Feasibility of satisfying electrical energy needs with hybrid stand alone systems for application in Tehran, Iran 2015 ,		4
135	Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation. <i>Energies</i> , 2020 , 13, 2716	3.1	4
134	5.5 Exergy Management 2018 , 166-201		4
133	Integration of a Gas Fired Steam Power Plant with a Total Site Utility Using a New Cogeneration Targeting Procedure. <i>Chinese Journal of Chemical Engineering</i> , 2014 , 22, 455-468	3.2	4
132	Importance of Physical and Physiological Parameters in Simulated Particle Transport in the Alveolar Zone of the Human Lung. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 113	2.6	4
131	Heat Pump Systems 2015 , 131-168		4
130	Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification. <i>Sustainability</i> , 2015 , 7, 1292-1307	3.6	4
129	Numerical Investigation of Local Entropy Generation for Laminar Flow in Rotating-Disk Systems. Journal of Heat Transfer, 2010 , 132,	1.8	4
128	Exergy analysis of heat exchangers in the copperInlorine thermochemical cycle to enhance thermal effectiveness and cycle efficiency. <i>International Journal of Low-Carbon Technologies</i> , 2011 , 6, 156-164	2.8	4
127	Nuclear energy as a component of sustainable energy systems. <i>International Journal of Low-Carbon Technologies</i> , 2007 , 2, 109-125	2.8	4
126	Thermodynamics education: Is present coverage of exergy sufficient and appropriate?. <i>Exergy an International Journal</i> , 2002 , 2, 207-210		4
125	Energy-Related Education and Awareness: The Role and Place for Exergy in Policy Development. <i>International Journal of Green Energy</i> , 2005 , 1, 451-465	3	4
124	Enhancing renewable energy prospects via hydrogen energy systems. <i>Journal of Fundamentals of Renewable Energy and Applications</i> , 2017 , 07,		4
123	Exergy and its Ties to the Environment, Economics, and Sustainability 2015 , 1-42		4

122	Exergy-Based Sustainability Analysis of Biodiesel Production and Combustion Processes. <i>Biofuel and Biorefinery Technologies</i> , 2019 , 193-217	1	4
121	Dynamic Advanced Exergetic, Exergoeconomic, and Environmental Analyses of a Hybrid Solar City Gate Station. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2021 , 143,	2.6	4
120	Exergy approach for advancing sustainability of a biomass boiler. <i>International Journal of Exergy</i> , 2018 , 27, 62	1.2	4
119	Modeling and Optimization of Multigeneration Energy Systems 2017, 398-446		3
118	Electric Vehicle Battery Lifetime Extension through an Intelligent Double-Layer Control Scheme. <i>Energies</i> , 2019 , 12, 1525	3.1	3
117	Performance and emission characteristics of a bio-lubricated two-stroke gasoline engine. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 17789-17796	5.1	3
116	Addressing the Impact of Environmental Xenobiotics in Coal-Fired Flue Gas. Sustainability, 2015, 7, 2678	3 -326 94	3
115	Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors. <i>Sustainability</i> , 2015 , 7, 3441-3459	3.6	3
114	Exergy Analysis and its Connection to Life Cycle Assessment 2012 , 185-215		3
113	Heat extraction from supercritical water-cooled nuclear reactors for hydrogen production plants. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 16527-16534	6.7	3
112	Intelligent optimization of charge allocation for plug-in hybrid electric vehicles utilizing renewable energy considering grid characteristics 2013 ,		3
111	Feasibility Analysis of Sustainability-Based Measures to Reduce VOC Emissions in Office Partition Manufacturing. <i>Sustainability</i> , 2010 , 2, 624-644	3.6	3
110	Economic and Environmental Comparison of Conventional and Alternative Vehicle Options 2010 , 1-17		3
109	Exergy and government policy: Is there a link?. Exergy an International Journal, 2002, 2, 224-226		3
108	Exergy Assessment of a Solar-Assisted District Energy System. <i>Open Fuels and Energy Science Journal</i> , 2018 , 11, 30-43		3
107	Do Universities Contribute to Sustainable Development?. <i>European Journal of Sustainable Development Research</i> , 2019 , 4,	1.6	3
106	Investigating azeotropic separation of hydrochloric acid for optimizing the copper-chlorine thermochemical cycle. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 26080-26089	6.7	3
105	Investigation of elastocaloric cooling option in a solar energy-driven system. <i>International Journal of Refrigeration</i> , 2020 , 120, 340-356	3.8	3

(2021-2021)

104	Energy modelling and analysis of a multi-generation renewable energy system for dairy farm applications. <i>Biofuels</i> , 2021 , 12, 273-283	2	3
103	Exergy and energy analyses 2021 , 23-35		3
102	Experimental and numerical investigation on the heat transfer of an automotive engine turbocharger. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</i> , 2021 , 235, 2124-2135	1.4	3
101	Modeling and Optimization 2017 , 33-64		2
100	Modeling and Optimization of Power Plants 2017 , 275-316		2
99	Experimental study of effect of anolyte concentration and electrical potential on electrolyzer performance in thermochemical hydrogen production using the Cu-Cl cycle. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 4160-4166	6.7	2
98	Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft. <i>Environmental Pollution</i> , 2018 , 236, 226-235	9.3	2
97	3.8 Ocean (Marine) Energy Production 2018 , 335-379		2
96	Thermodynamic analysis of an integrated gasification combined cycle power plant: effect of nitrogen supply on system performance. <i>International Journal of Exergy</i> , 2014 , 14, 505	1.2	2
95	Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit. <i>Energy and Environment</i> , 2017 , 28, 725-743	2.4	2
94	Industrial Heating and Cooling Systems 2015 , 99-129		2
93	A Dual Function Energy Store. Sustainability, 2014 , 6, 8297-8309	3.6	2
92	Mixing Performance of a Suspended Stirrer for Homogenizing Biodegradable Food Waste from Eatery Centers. <i>Sustainability</i> , 2014 , 6, 5554-5565	3.6	2
91	Approaching Resonant Absorption of Environmental Xenobiotics Harmonic Oscillation by Linear Structures. <i>Sustainability</i> , 2012 , 4, 561-573	3.6	2
90	An Exergy-Based Method for Allocating Carbon Dioxide Emissions from Cogeneration Systems - Part II: Justification for Exergy Basis 2006 ,		2
89	Development of New Spatio-Temporal Wind Exergy Maps 2006 , 475		2
88	The Angular Distribution of Diffuse Sky Radiance: An Assessment of the Effects of Haze. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 1991 , 113, 200-205	2.3	2
87	Energy, Exergy, Exergoeconomic and Exergoenvironmental Impact Analyses and Optimization of Various Geothermal Power Cycle Configurations. <i>Entropy</i> , 2021 , 23,	2.8	2

86	Modeling of vertical ground heat exchangers. International Journal of Green Energy, 2021, 18, 755-774	3	2
85	Performance improvement study of an integrated photovoltaic system for offshore power production. <i>International Journal of Energy Research</i> , 2021 , 45, 772-785	4.5	2
84	Exergy analyses of refrigeration and heat pump systems 2021 , 125-141		2
83	Energy, exergy, exergoenvironmental, and exergoeconomic (4E) analyses of a gas boosting station. <i>Energy Science and Engineering</i> , 2021 , 9, 2044	3.4	2
82	Optimal equipment arrangement of a total site for cogeneration of thermal and electrical energy by using exergoeconomic approach. <i>Energy Reports</i> , 2021 , 7, 5330-5343	4.6	2
81	Multi-objective optimization of a residential building envelope in the Bahamas 2017,		1
80	Constituent solubility and dissolution in a CuCl-HCl-H2O ternary system. <i>Chemical Engineering Science</i> , 2018 , 184, 209-215	4.4	1
79	Experimental investigation of particle dissolution rates in aqueous solutions for hydrogen production. <i>Heat and Mass Transfer</i> , 2016 , 52, 2067-2073	2.2	1
78	3.10 Electrochemical Energy Production 2018 , 416-469		1
77	3.11 Chemical Energy Production 2018 , 470-520		1
77 76	3.11 Chemical Energy Production 2018, 470-520 Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen production facility. <i>International Journal of Energy Research</i> , 2013, 37, 358-369	4.5	1
	Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen	4.5	
76	Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen production facility. <i>International Journal of Energy Research</i> , 2013 , 37, 358-369	4.5	1
76 75	Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen production facility. <i>International Journal of Energy Research</i> , 2013 , 37, 358-369 Configurations for multiple thermal energy storages in thermal networks 2013 , Thermal efficiency improvement of hydrogen production via thermochemical water splitting 2013 ,	4.5	1
76 75 74	Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen production facility. <i>International Journal of Energy Research</i> , 2013 , 37, 358-369 Configurations for multiple thermal energy storages in thermal networks 2013 , Thermal efficiency improvement of hydrogen production via thermochemical water splitting 2013 ,		1 1
76 75 74 73	Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen production facility. <i>International Journal of Energy Research</i> , 2013 , 37, 358-369 Configurations for multiple thermal energy storages in thermal networks 2013 , Thermal efficiency improvement of hydrogen production via thermochemical water splitting 2013 , Hydrogen production from biomass via an iron oxide thermochemical cycle. <i>Biofuels</i> , 2017 , 8, 709-716		1 1 1
76 75 74 73 72	Analysis of the hazards for the molten cuprous chloride pouring operation in an industrial hydrogen production facility. <i>International Journal of Energy Research</i> , 2013 , 37, 358-369 Configurations for multiple thermal energy storages in thermal networks 2013 , Thermal efficiency improvement of hydrogen production via thermochemical water splitting 2013 , Hydrogen production from biomass via an iron oxide thermochemical cycle. <i>Biofuels</i> , 2017 , 8, 709-716 Industrial ecology and its role in enhancing the design for energy selection and efficiency 2017 , Green function solution for transient heat conduction in annular fin during solidification of phase	2	1 1 1 1 1

(2021-2012)

68	Utilizing the Exergy Concept to Address Environmental Challenges of Electric Systems. <i>Entropy</i> , 2012 , 14, 1894-1914	2.8	1
67	Improving the Efficiency of Electrical Systems via Exergy Methods 2007,		1
66	Exergy Concept and its Application 2007,		1
65	Improving Electrical Generating Station Efficiency by Varying Stack-Gas Temperature. <i>International Journal of Green Energy</i> , 2007 , 4, 589-600	3	1
64	Use of thermal energy storage for sustainable buildings. <i>Proceedings of Institution of Civil Engineers: Energy</i> , 2007 , 160, 113-121	0.7	1
63	Should we educate the public about exergy?. Exergy an International Journal, 2002, 2, 211-213		1
62	Multi-Objective Optimization of a Geothermal Steam Turbine Combined With Reverse Osmosis and Multi-Effect Desalination for Sustainable Freshwater Production. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2022 , 144,	2.6	1
61	Effective Thermal Conductivity and Borehole Thermal Resistance in Selected Borehole Heat Exchangers for the Same Geology. <i>Energies</i> , 2022 , 15, 1152	3.1	1
60	A comprehensive comparative investigation on solar heating and cooling technologies from a thermo-economic viewpoint dynamic simulation. <i>Energy Science and Engineering</i> , 2021 , 9, 724-742	3.4	1
59	Economic Assessment of Three Biomass-Based Hydrogen Production Systems 2014 , 899-912		1
58	Investigation of a Renewable Energy-Based Integrated System for Baseload Power Generation 2014 , 21-46		1
57	Storing Exergy in the Ground: An Effective Use of the Environment. <i>Research Journal of Environmental Sciences</i> , 2015 , 9, 66-73	О	1
56	Energy and exergy assessment with updated Reistad estimates: A case study in the transportation sector of Bangladesh. <i>Energy Science and Engineering</i> , 2021 , 9, 1349-1358	3.4	1
55	Chemical exergy 2021 , 37-60		1
54	Exergoeconomic analyses of thermal systems 2021 , 527-563		1
53	Renewable energy and energy sustainability 2021 , 17-31		1
52	Exergy analysis 2021 , 43-60		1
51	Heat pumps and absorption chillers 2021 , 163-180		1

50	Exergy analyses of cogeneration and district energy systems 2021, 355-381		1
49	Thermoeconomic analysis and multi-objective optimization of a solid-oxide fuel cell plant coupled with methane tri-reforming: Effects of thermochemical recuperation. <i>International Journal of Energy Research</i> , 2021 , 45, 10332-10354	4.5	1
48	3.16 Thermal Energy Production 2018 , 673-706		1
47	Geothermal power plants 2021 , 147-162		1
46	A conceptual review of sustainable electrical power generation from biogas. <i>Energy Science and Engineering</i> , 2022 , 10, 630-655	3.4	1
45	An outlook on endangering grid security in India due to implementation challenges of low voltage ride through protection in wind turbines. <i>International Transactions on Electrical Energy Systems</i> , 2020 , 30, e12672	2.2	O
44	Assessment of a Geothermal Combined System with an Organic Rankine Cycle and Multi-effect Distillation Desalination. <i>Earth Systems and Environment</i> ,1	7.5	О
43	Optimal scheduling of residential building energy system under B2G, G2B and B2B operation modes. <i>International Journal of Energy and Environmental Engineering</i> ,1	4	O
42	Exergy analyses of thermal energy storage systems 2021 , 167-210		О
41	Exergy analyses of renewable energy systems 2021 , 241-324		O
41 40	Exergy analyses of renewable energy systems 2021 , 241-324 Exergy analyses of fuel cell systems 2021 , 479-514		0
40	Exergy analyses of fuel cell systems 2021 , 479-514	1.6	0
40	Exergy analyses of fuel cell systems 2021 , 479-514 Exergy and multiobjective optimization 2021 , 641-665 Economic and Environmental Analyses of Multi-Generation Renewable Energy System for Dairy	1.6 4·5	0
40 39 38	Exergy analyses of fuel cell systems 2021, 479-514 Exergy and multiobjective optimization 2021, 641-665 Economic and Environmental Analyses of Multi-Generation Renewable Energy System for Dairy Farms. European Journal of Sustainable Development Research, 2021, 6, em0174 Transition of heavy-duty trucks from diesel to hydrogen fuel cells: Opportunities, challenges, and		0 0
40 39 38 37	Exergy analyses of fuel cell systems 2021, 479-514 Exergy and multiobjective optimization 2021, 641-665 Economic and Environmental Analyses of Multi-Generation Renewable Energy System for Dairy Farms. European Journal of Sustainable Development Research, 2021, 6, em0174 Transition of heavy-duty trucks from diesel to hydrogen fuel cells: Opportunities, challenges, and recommendations. International Journal of Energy Research, Analysis of variance and multi-objective optimization of efficiencies and emission in air/steam rigid and flexible polyurethane foam wastes gasification. Chemical Engineering and Processing: Process	4.5	o o o
40 39 38 37 36	Exergy analyses of fuel cell systems 2021, 479-514 Exergy and multiobjective optimization 2021, 641-665 Economic and Environmental Analyses of Multi-Generation Renewable Energy System for Dairy Farms. European Journal of Sustainable Development Research, 2021, 6, em0174 Transition of heavy-duty trucks from diesel to hydrogen fuel cells: Opportunities, challenges, and recommendations. International Journal of Energy Research, Analysis of variance and multi-objective optimization of efficiencies and emission in air/steam rigid and flexible polyurethane foam wastes gasification. Chemical Engineering and Processing: Process Intensification, 2022, 176, 108961	4.5	o o o

32	Thermal Storage 2016 , 350-367
31	Exergy Analysis: Theory and Applications 2016 , 628-650
30	Exergy-Related Methods 2015 , 309-366
29	Limits to Efficiency for Energy Utilization 2015 , 1-13
28	Renewable Energy-Based Building HVAC Systems 2015 , 279-308
27	Performance Evaluation of Integrated Energy Systems 2014 , 103-147
26	CFD Analysis of a Shell and Tube Heat Exchanger Linking a Supercritical Water-Cooled Nuclear Reactor and a Copper-Chlorine Hydrogen Production Cycle 2014 , 55-62
25	Advances in Sustainability: Contributions and Outcomes of the 2nd World Sustainability Forum. Sustainability, 2013 , 5, 1208-1210 3.6
24	ICONE15-10350 THERMODYNAMIC ANALYSIS OF THE USE A CHEMICAL HEAT PUMP TO LINK A SUPERCRITICAL WATER-COOLED NUCLEAR REACTOR AND A THERMOCHEMICAL WATER-SPLITTING CYCLE FOR HYDROGEN PRODUCTION. The Proceedings of the International
23	Conference on Nuclear Engineering (ICONE), 2007, 2007.15, _ICONE1510ICONE1510 Sustainability: Concepts, Definitions, and Applications 2020, 15-26
22	Living Standards and Culture: Energy Impact 2014 , 1139-1147
21	Exergy: Analysis 2014 , 683-691
20	Exergy: Environmental Impact Assessment Applications 2014 , 692-699
19	Natural Energy versus Additional Energy 2014 , 1273-1280
18	Environmental Impact Assessments of Integrated Multigeneration Energy Systems 2013, 751-777
17	Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg []l and Cu []l Thermochemical Water Splitting Cycles 2013 , 433-459
16	Thermodynamic Assessment of Seasonal Stratified Thermal Storage 2014 , 245-261
15	Underground Thermal Energy Storage 2016 , 39-75

13	Thermodynamic Analysis 2016 , 184-205	
12	Exergy analyses of steam power plants 2021 , 325-354	
11	Sectoral exergy analysis 2021 , 565-599	
10	Exergetic life cycle assessment 2021 , 601-629	
9	Exergy and industrial ecology 2021 , 631-639	
8	Advanced Evaluation of a Biomass Externally Fired Hydrogen Production Combined Cycle. <i>Chemical Engineering and Technology</i> , 2021 , 44, 1585-1595	2
7	Exergy consumption and entropy generation rates of earth: an assessment for the planet and its primary systems. <i>Energy, Ecology and Environment</i> ,1	3.5
6	A comprehensive sensitivity analysis on the performance of pseudo-steady propane thermal cracking process. <i>Environmental Progress and Sustainable Energy</i> ,e13731	2.5
5	Energy Storage Systems 2021 , 59-123	
4	Energy and Exergy Analyses 2021 , 261-382	
3	Thermal Investigation of a Turbocharger Using IR Thermography. Clean Technologies, 2022, 4, 329-344	3.4
2	Waste Management and the Circular Economy. CSR, Sustainability, Ethics & Governance, 2022, 119-131	0.2
1	The Circular Economy and Energy. CSR, Sustainability, Ethics & Governance, 2022, 133-149	0.2

Ground Heat Exchanger Modeling Examples 2016, 143-183

14