Luca DedÃ"

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534421/publications.pdf

Version: 2024-02-01

223531 257101 2,509 83 24 46 h-index citations g-index papers 85 85 85 1612 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The role of mechano-electric feedbacks and hemodynamic coupling in scar-related ventricular tachycardia. Computers in Biology and Medicine, 2022, 142, 105203.	3.9	21
2	3D–0D closed-loop model for the simulation of cardiac biventricular electromechanics. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114607.	3.4	23
3	A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 2391.	0.6	22
4	Modeling the cardiac electromechanical function: A mathematical journey. Bulletin of the American Mathematical Society, 2022, 59, 371-403.	0.8	4
5	Slow Conduction Corridors and Pivot Sites Characterize the Electrical Remodeling in Atrial Fibrillation. JACC: Clinical Electrophysiology, 2022, 8, 561-577.	1.3	18
6	Modelling the COVID-19 epidemic and the vaccination campaign in Italy by the SUIHTER model. Infectious Disease Modelling, 2022, 7, 45-63.	1.2	11
7	A machine learning approach to enhance the SUPG stabilization method for advection-dominated differential problems. Mathematics in Engineering, 2022, 5, 1-26.	0.5	7
8	Computational fluid dynamics of blood flow in an idealized left human heart. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3287.	1.0	13
9	Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113468.	3.4	58
10	Mathematical analysis and numerical approximation of a general linearized poro-hyperelastic model. Computers and Mathematics With Applications, 2021, 91, 202-228.	1.4	12
11	Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction. Vietnam Journal of Mathematics, 2021, 49, 87-118.	0.4	17
12	Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study. Mathematical Biosciences and Engineering, 2021, 18, 3364-3383.	1.0	5
13	Data integration for the numerical simulation of cardiac electrophysiology. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 726-736.	0.5	8
14	Characterization of cardiac electrogram signals in atrial arrhythmias. Minerva Cardiology and Angiology, 2021, 69, 70-80.	0.4	1
15	Multipatch Isogeometric Analysis for electrophysiology: Simulation in a human heart. Computer Methods in Applied Mechanics and Engineering, 2021, 376, 113666.	3.4	23
16	A Comprehensive Deep Learning-Based Approach to Reduced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs. Journal of Scientific Computing, 2021, 87, 1.	1.1	108
17	A Computational Study of the Electrophysiological Substrate in Patients Suffering From Atrial Fibrillation. Frontiers in Physiology, 2021, 12, 673612.	1.3	6
18	Mathematical and numerical models for the cardiac electromechanical function. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche E Naturali, Rendiconti Lincei Matematica E Applicazioni, 2021, 32, 233-272.	0.3	3

#	Article	IF	CITATIONS
19	A mathematical dashboard for the analysis of Italian <scp>COVID < scp>â€19 epidemic data. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3513.</scp>	1.0	8
20	POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium. Frontiers in Physiology, 2021, 12, 679076.	1.3	19
21	Hemodynamics of the heart's left atrium based on a Variational Multiscale-LES numerical method. European Journal of Mechanics, B/Fluids, 2021, 89, 380-400.	1.2	27
22	<tt>SUIHTER</tt> : a new mathematical model for COVID-19. Application to the analysis of the second epidemic outbreak in Italy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210027.	1.0	21
23	Electromechanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under arrhythmia. Computers in Biology and Medicine, 2021, 136, 104674.	3.9	26
24	Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks. Computers and Mathematics With Applications, 2021, 104, 1-13.	1.4	17
25	Electro-Mechanical Coupling in Human Atrial Cardiomyocytes: Model Development and Analysis of Inotropic Interventions. , 2021, , .		2
26	An image-based computational hemodynamics study of the Systolic Anterior Motion of the mitral valve. Computers in Biology and Medicine, 2020, 123, 103922.	3.9	26
27	Outer loop and isthmus in ventricular tachycardia circuits: Characteristics and implications. Heart Rhythm, 2020, 17, 1719-1728.	0.3	20
28	An intergrid transfer operator using radial basis functions with application to cardiac electromechanics. Computational Mechanics, 2020, 66, 491-511.	2.2	16
29	Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics. Computer Methods in Applied Mechanics and Engineering, 2020, 370, 113268.	3.4	39
30	A Computational Comparison Between Isogeometric Analysis and Spectral Element Methods: Accuracy and Spectral Properties. Journal of Scientific Computing, 2020, 83, 1.	1.1	9
31	A Proof of Concept for Computational Fluid Dynamic Analysis of the Left Atrium in Atrial Fibrillation on a Patient-Specific Basis. Journal of Biomechanical Engineering, 2020, 142, .	0.6	41
32	Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLoS Computational Biology, 2020, 16, e1008294.	1.5	36
33	Deep learning-based reduced order models in cardiac electrophysiology. PLoS ONE, 2020, 15, e0239416.	1.1	40
34	Effect of fibre orientation and bulk modulus on the electromechanical modelling of human ventricles. Mathematics in Engineering, 2020, 2, 614-638.	0.5	7
35	Segregated Algorithms for the Numerical Simulation of Cardiac Electromechanics in the Left Human Ventricle. Lecture Notes in Mathematics, 2020, , 81-116.	0.1	6
36	Machine learning for fast and reliable solution of time-dependent differential equations. Journal of Computational Physics, 2019, 397, 108852.	1.9	70

#	Article	IF	Citations
37	Basic facts about quantitative physiology. , 2019, , 3-9.		0
38	Modelling blood flow., 2019,, 25-76.		0
39	Modelling the heart., 2019, , 102-152.		0
40	Parameter estimation from clinical data. , 2019, , 178-202.		0
41	Accounting for uncertainty. , 2019, , 203-224.		0
42	Reduced-order modelling., 2019,, 225-234.		0
43	Isogeometric Analysis of the electrophysiology in the human heart: Numerical simulation of the bidomain equations on the atria. Computer Methods in Applied Mechanics and Engineering, 2019, 343, 52-73.	3.4	21
44	Biomembrane modeling with isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 103-119.	3.4	8
45	A Hele–Shaw–Cahn–Hilliard Model for Incompressible Two-Phase Flows with Different Densities. Journal of Mathematical Fluid Mechanics, 2018, 20, 531-567.	0.4	22
46	A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e3137.	1.0	10
47	Numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2984.	1.0	15
48	Active contraction of cardiac cells: a reduced model for sarcomere dynamics with cooperative interactions. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1663-1686.	1.4	24
49	Isogeometric Analysis of a Phase Field Model for Darcy Flows with Discontinuous Data. Chinese Annals of Mathematics Series B, 2018, 39, 487-512.	0.2	3
50	The Impact of Left Atrium Appendage Morphology on Stroke Risk Assessment in Atrial Fibrillation: A Computational Fluid Dynamics Study. Frontiers in Physiology, 2018, 9, 1938.	1.3	71
51	A monolithic algorithm for the simulation of cardiac electromechanics in the human left ventricle. Mathematics in Engineering, 2018, 1 , 1 -37.	0.5	36
52	Isogeometric analysis and proper orthogonal decomposition for parabolic problems. Numerische Mathematik, 2017, 135, 333-370.	0.9	24
53	Isogeometric approximation of cardiac electrophysiology models on surfaces: An accuracy study with application to the human left atrium. Computer Methods in Applied Mechanics and Engineering, 2017, 317, 248-273.	3.4	28
54	Fluid dynamics of an idealized left ventricle: the extended Nitsche's method for the treatment of heart valves as mixed time varying boundary conditions. International Journal for Numerical Methods in Fluids, 2017, 85, 135-164.	0.9	24

#	Article	IF	CITATIONS
55	Complex blood flow patterns in an idealized left ventricle: A numerical study. Chaos, 2017, 27, 093939.	1.0	18
56	A patient-specific aortic valve model based on moving resistive immersed implicit surfaces. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1779-1803.	1.4	41
57	Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 1197-1221.	0.8	17
58	A Patient-Specific Computational Fluid Dynamics Model of the Left Atrium in Atrial Fibrillation: Development and Initial Evaluation. Lecture Notes in Computer Science, 2017, , 392-400.	1.0	20
59	Nitsche's method for parabolic partial differential equations with mixed time varying boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, 50, 541-563.	0.8	3
60	Isogeometric Analysis of geometric Partial Differential Equations. Computer Methods in Applied Mechanics and Engineering, 2016, 311, 625-647.	3.4	10
61	IGS: An IsoGeometric approach for smoothing on surfaces. Computer Methods in Applied Mechanics and Engineering, 2016, 302, 70-89.	3.4	18
62	A numerical study of isotropic and anisotropic constitutive models with relevance to healthy and unhealthy cerebral arterial tissues. International Journal of Engineering Science, 2016, 101, 126-155.	2.7	17
63	Well-Posedness, Regularity, and Convergence Analysis of the Finite Element Approximation of a Generalized Robin Boundary Value Problem. SIAM Journal on Numerical Analysis, 2015, 53, 105-126.	1.1	24
64	Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Computational Mechanics, 2015, 55, 479-498.	2.2	15
65	Isogeometric Analysis of high order Partial Differential Equations on surfaces. Computer Methods in Applied Mechanics and Engineering, 2015, 295, 446-469.	3.4	73
66	Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a High Performance Computing framework. Computers and Fluids, 2015, 117, 168-182.	1.3	79
67	Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dynamics, 2015, 81, 77-96.	2.7	28
68	Isogeometric Analysis for second order Partial Differential Equations on surfaces. Computer Methods in Applied Mechanics and Engineering, 2015, 284, 807-834.	3.4	37
69	Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation. Computer Methods in Applied Mechanics and Engineering, 2015, 284, 320-348.	3.4	52
70	Isogeometric Analysis and error estimates for high order partial differential equations in fluid dynamics. Computers and Fluids, 2014, 102, 277-303.	1.3	81
71	Isogeometric analysis of the advective Cahn–Hilliard equation: Spinodal decomposition under shear flow. Journal of Computational Physics, 2013, 242, 321-350.	1.9	90
72	Isogeometric Analysis for Topology Optimization with a Phase Field Model. Archives of Computational Methods in Engineering, 2012, 19, 427-465.	6.0	220

#	Article	IF	CITATION
73	An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 2012, 249-252, 116-150.	3.4	372
74	Reduced Basis Method and Error Estimation for Parametrized Optimal Control Problems with Control Constraints. Journal of Scientific Computing, 2012, 50, 287-305.	1.1	20
7 5	B-spline goal-oriented error estimators for geometrically nonlinear rods. Computational Mechanics, 2012, 49, 35-52.	2.2	19
76	Reduced Basis Method for Parametrized Elliptic Advection-Reaction Problems. Journal of Computational Mathematics, 2010, 28, 122-148.	0.2	7
77	Reduced Basis Method and A Posteriori Error Estimation for Parametrized Linear-Quadratic Optimal Control Problems. SIAM Journal of Scientific Computing, 2010, 32, 997-1019.	1.3	41
78	Anisotropic error control for environmental applications. Applied Numerical Mathematics, 2008, 58, 1320-1339.	1.2	17
79	Optimal flow control for Navier–Stokes equations: drag minimization. International Journal for Numerical Methods in Fluids, 2007, 55, 347-366.	0.9	25
80	Optimal control and numerical adaptivity for advection–diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2005, 39, 1019-1040.	0.8	36
81	Numerical Approximation of a Control Problem for Advection-Diffusion Processes. , 2005, , 261-273.		4
82	Development of a Computational Fluid Dynamics Model of the Left Atrium in Atrial Fibrillation on a Patient Specific Basis. , 0 , , .		4
83	Simulation of the Hemodynamic Effects of the Left Atrial Appendage Occlusion in Atrial Fibrillation: Preliminary Results., 0, , .		2