James V Haxby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534158/publications.pdf Version: 2024-02-01

IAMES V HAVRY

#	Article	IF	CITATIONS
1	The distributed human neural system for face perception. Trends in Cognitive Sciences, 2000, 4, 223-233.	4.0	4,144
2	Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 2006, 10, 424-430.	4.0	2,083
3	Neural correlates of category-specific knowledge. Nature, 1996, 379, 649-652.	13.7	1,621
4	Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 2000, 3, 80-84.	7.1	1,104
5	Neural systems for recognition of familiar faces. Neuropsychologia, 2007, 45, 32-41.	0.7	779
6	Decoding Neural Representational Spaces Using Multivariate Pattern Analysis. Annual Review of Neuroscience, 2014, 37, 435-456.	5.0	615
7	A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex. Neuron, 2011, 72, 404-416.	3.8	547
8	CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave. Frontiers in Neuroinformatics, 2016, 10, 27.	1.3	468
9	Mothers' neural activation in response to pictures of their children and other children. Biological Psychiatry, 2004, 56, 225-232.	0.7	441
10	PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data. Neuroinformatics, 2009, 7, 37-53.	1.5	435
11	Implicit Trustworthiness Decisions: Automatic Coding of Face Properties in the Human Amygdala. Journal of Cognitive Neuroscience, 2007, 19, 1508-1519.	1.1	429
12	Two Takes on the Social Brain: A Comparison of Theory of Mind Tasks. Journal of Cognitive Neuroscience, 2007, 19, 1803-1814.	1.1	361
13	The Representation of Biological Classes in the Human Brain. Journal of Neuroscience, 2012, 32, 2608-2618.	1.7	332
14	Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 2012, 62, 852-855.	2.1	308
15	Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex. Journal of Cognitive Neuroscience, 2005, 17, 580-590.	1.1	301
16	Social and emotional attachment in the neural representation of faces. NeuroImage, 2004, 22, 1628-1635.	2.1	260
17	Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face―area?. NeuroImage, 2004, 23, 156-166.	2.1	242
18	A Model of Representational Spaces in Human Cortex. Cerebral Cortex, 2016, 26, 2919-2934.	1.6	173

JAMES V HAXBY

#	Article	IF	CITATIONS
19	Beyond amygdala: Default Mode Network activity differs between patients with Social Phobia and healthy controls. Brain Research Bulletin, 2009, 79, 409-413.	1.4	165
20	The representation of self and person knowledge in the medial prefrontal cortex. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 451-470.	1.4	154
21	Function-based Intersubject Alignment of Human Cortical Anatomy. Cerebral Cortex, 2010, 20, 130-140.	1.6	147
22	Neural response to the visual familiarity of faces. Brain Research Bulletin, 2006, 71, 76-82.	1.4	141
23	The Animacy Continuum in the Human Ventral Vision Pathway. Journal of Cognitive Neuroscience, 2015, 27, 665-678.	1.1	134
24	Dissociation of face-selective cortical responses by attention. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1065-1070.	3.3	116
25	Differential modulation of neural activity throughout the distributed neural system for face perception in patients with Social Phobia and healthy subjects. Brain Research Bulletin, 2008, 77, 286-292.	1.4	113
26	Effect of task difficulty on cerebral blood flow during perceptual matching of faces. , 1996, 4, 227-239.		102
27	PyMVPA: a unifying approach to the analysis of neuroscientific data. Frontiers in Neuroinformatics, 2009, 3, 3.	1.3	98
28	Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies. ELife, 2020, 9, .	2.8	95
29	Inter-subject alignment of human cortical anatomy using functional connectivity. NeuroImage, 2013, 81, 400-411.	2.1	94
30	Attention Selectively Reshapes the Geometry of Distributed Semantic Representation. Cerebral Cortex, 2017, 27, 4277-4291.	1.6	85
31	Distributed Neural Systems for Face Perception. , 2011, , .		80
32	A computational model of shared fine-scale structure in the human connectome. PLoS Computational Biology, 2018, 14, e1006120.	1.5	71
33	Selective attention to face identity and color studied with f MRI. , 1997, 5, 293-297.		70
34	Reliable individual differences in fine-grained cortical functional architecture. NeuroImage, 2018, 183, 375-386.	2.1	59
35	How the Human Brain Represents Perceived Dangerousness or "Predacity―of Animals. Journal of Neuroscience, 2016, 36, 5373-5384	1.7	43
36	Naturalistic stimuli reveal a dominant role for agentic action in visual representation. NeuroImage, 2020, 216, 116561.	2.1	42

JAMES V HAXBY

#	Article	IF	CITATIONS
37	The neural basis of intelligence in fine-grained cortical topographies. ELife, 2021, 10, .	2.8	41
38	Regularized hyperalignment of multi-set fMRI data. , 2012, , .		27
39	Decoding individual differences in STEM learning from functional MRI data. Nature Communications, 2019, 10, 2027.	5.8	22
40	Predicting individual face-selective topography using naturalistic stimuli. NeuroImage, 2020, 216, 116458.	2.1	21
41	Modeling Semantic Encoding in a Common Neural Representational Space. Frontiers in Neuroscience, 2018, 12, 437.	1.4	18
42	Shared neural codes for visual and semantic information about familiar faces in a common representational space. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
43	fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity. Advances in Neural Information Processing Systems, 2009, 22, 378-386.	2.8	16
44	Neural Responses to Naturalistic Clips of Behaving Animals in Two Different Task Contexts. Frontiers in Neuroscience, 2018, 12, 316.	1.4	13
45	Joint SVD-Hyperalignment for multi-subject FMRI data alignment. , 2014, , .		12
46	Hybrid hyperalignment: A single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity. NeuroImage, 2021, 233, 117975.	2.1	11
47	Structural Basis of Semantic Memory â~†. , 2017, , 133-151.		3
48	Using the force: STEM knowledge and experience construct shared neural representations of engineering concepts. Npj Science of Learning, 2020, 5, 6.	1.5	3
49	Effect of task difficulty on cerebral blood flow during perceptual matching of faces. Human Brain Mapping, 1996, 4, 227-239.	1.9	2
50	Inner visions. Nature, 1995, 377, 266-266.	13.7	0
51	Collaborative denoising of multi-subject fMRI data. , 2013, , .		0