Xuezhu Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533834/publications.pdf Version: 2024-02-01

Χιιέζηιι Υε

#	Article	IF	CITATIONS
1	Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil. Environmental Pollution, 2022, 304, 119232.	7.5	17
2	Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. Toxics, 2022, 10, 259.	3.7	2
3	Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Ecotoxicology and Environmental Safety, 2021, 208, 111506.	6.0	26
4	Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.). Science of the Total Environment, 2021, 788, 147786.	8.0	22
5	Synergistic effects of CO2 and MgCl2 on heavy metals removal and phosphorus recovery in biochar obtained from pyrolysis of swine sludge. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105245.	5.5	6
6	The effect of sepiolite application on rice Cd uptake – A two-year field study in Southern China. Journal of Environmental Management, 2020, 254, 109788.	7.8	25
7	Cumulative effects of pyrolysis temperature and process on properties, chemical speciation, and environmental risks of heavy metals in magnetic biochar derived from coagulation-flocculation sludge of swine wastewater. Journal of Environmental Chemical Engineering, 2020, 8, 104472.	6.7	25
8	Evaluation of cadmium (Cd) transfer from paddy soil to rice (Oryza sativa L) using DGT in comparison with conventional chemical methods: derivation of models to predict Cd accumulation in rice grains. Environmental Science and Pollution Research, 2020, 27, 14953-14962.	5.3	12
9	Absorption of cadmium accompanied by EDTA varies according to tomato cultivar. Crop and Pasture Science, 2019, 70, 981.	1.5	1
10	Evaluation of cadmium transfer from soil to leafy vegetables: Influencing factors, transfer models, and indication of soil threshold contents. Ecotoxicology and Environmental Safety, 2018, 164, 355-362.	6.0	51
11	Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments. Environmental Science and Pollution Research, 2017, 24, 5060-5067.	5.3	31
12	lsolation and characterization of chromium(VI)-reducing <i>Bacillus</i> sp. FY1 and <i>Arthrobacter</i> sp. WZ2 and their bioremediation potential. Bioremediation Journal, 2017, 21, 100-108.	2.0	38
13	Effects of organic substances on struvite crystallization and recovery. Desalination and Water Treatment, 2016, 57, 10924-10933.	1.0	20
14	Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environmental Monitoring and Assessment, 2015, 187, 378.	2.7	62
15	Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicology and Environmental Safety, 2015, 113, 439-445.	6.0	52
16	Responses to cadmium stress in two tomato genotypes differing inheavy metal accumulation. Turkish Journal of Botany, 2015, 39, 615-624.	1.2	14
17	Determination of Eight Mineral Elements in Chinese Bayberry (Myrica rubra) from Zhejiang, China. Asian Journal of Chemistry, 2013, 25, 6682-6684.	0.3	0
18	Influences of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen and soil salt-ion leaching. Journal of Environmental Sciences, 2008, 20, 304-308.	6.1	17

#	Article	IF	CITATIONS
19	Evaluation of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns. Chemosphere, 2007, 67, 872-878.	8.2	36