Fuyi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533718/publications.pdf Version: 2024-02-01

FUVILIANC

#	Article	IF	CITATIONS
1	Nanoporous CaCO ₃ Coatings Enabled Uniform Zn Stripping/Plating for Longâ€Life Zinc Rechargeable Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1801090.	10.2	869
2	Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 296, 907-915.	2.6	365
3	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.	2.5	247
4	Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chemical Communications, 2017, 53, 6872-6874.	2.2	147
5	Willowâ€Leafâ€Like ZnSe@Nâ€Doped Carbon Nanoarchitecture as a Stable and Highâ€Performance Anode Material for Sodiumâ€Ion and Potassiumâ€Ion Batteries. Small, 2020, 16, e2004580.	5.2	106
6	Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Research, 2020, 13, 691-700.	5.8	93
7	Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chemical Engineering Journal, 2021, 413, 127537.	6.6	90
8	Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure. Advanced Energy Materials, 2021, 11, 2003699.	10.2	77
9	NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites. Chemical Engineering Journal, 2020, 388, 124304.	6.6	75
10	Rechargeable Aqueous Zincâ€lon Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	2.4	68
11	Establishing High-Performance Quasi-Solid Zn/I ₂ Batteries with Alginate-Based Hydrogel Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 24756-24764.	4.0	64
12	Hierarchical 1ÂT-MoS2/MoOx@NC microspheres as advanced anode materials for potassium/sodium-ion batteries. Chemical Engineering Journal, 2022, 428, 131113.	6.6	63
13	Boosting Zn I2 Battery's Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer. Nano-Micro Letters, 2022, 14, 82.	14.4	62
14	Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. Journal of Energy Chemistry, 2022, 69, 356-362.	7.1	56
15	Dendrite-free and long-life Na metal anode achieved by 3D porous Cu. Electrochimica Acta, 2019, 309, 18-24.	2.6	51
16	Rationally designed hierarchical N, P co-doped carbon connected 1T/2H-MoS2 heterostructures with cooperative effect as ultrafast and durable anode materials for efficient sodium storage. Chemical Engineering Journal, 2022, 433, 133778.	6.6	49
17	Molybdenum chalcogenides based anode materials for alkali metal ions batteries: Beyond lithium ion batteries. Energy Storage Materials, 2022, 50, 308-333.	9.5	46
18	Fe7S8 nanoparticles attached carbon networks as anode materials for both lithium and sodium ion batteries. Chemical Physics Letters, 2018, 706, 273-279.	1.2	42

Fuyi Jiang

#	Article	IF	CITATIONS
19	Ferroferric oxide nanoclusters decorated Ti3C2Tx nanosheets as high performance anode materials for lithium ion batteries. Electrochimica Acta, 2020, 329, 135146.	2.6	41
20	Improved electrochemical performance of 2D accordion-like MnV ₂ O ₆ nanosheets as anode materials for Li-ion batteries. Dalton Transactions, 2020, 49, 1794-1802.	1.6	41
21	A simple, low-cost and scale-up synthesis strategy of spherical-graphite/Fe2O3 composites as high-performance anode materials for half/full lithium ion batteries. Journal of Alloys and Compounds, 2020, 822, 153719.	2.8	38
22	Fabrication of iron oxide/silica core–shell nanoparticles and their magnetic characteristics. Journal of Alloys and Compounds, 2012, 543, 43-48.	2.8	37
23	A Longâ€Life Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 1900425.	3.1	37
24	Vanadium sulfide sub-microspheres: A new near-infrared-driven photocatalyst. Journal of Colloid and Interface Science, 2017, 498, 442-448.	5.0	35
25	Facile synthesis of lotus seedpod-based 3D hollow porous activated carbon/manganese dioxide composite for supercapacitor electrode. Journal of Electroanalytical Chemistry, 2019, 853, 113561.	1.9	34
26	Ti ₃ C ₂ T _x with a hydroxyl-rich surface for metal sulfides as high performance electrode materials for sodium/lithium storage. Journal of Materials Chemistry A, 2021, 9, 14013-14024.	5.2	32
27	Subsequent monitoring of ferric ion and ascorbic acid using graphdiyne quantum dots-based optical sensors. Mikrochimica Acta, 2020, 187, 657.	2.5	30
28	Hierarchical Fe3O4@NC composites: ultra-long cycle life anode materials for lithium ion batteries. Journal of Materials Science, 2018, 53, 2127-2136.	1.7	29
29	Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries. Nanomaterials, 2018, 8, 135.	1.9	27
30	Ultrasmall MoS ₃ Loaded CO Nanocomposites as Highâ€Rate and Longâ€Cycleâ€Life Anode Materials for Lithium―and Sodiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 3113-3119.	1.7	27
31	A Longâ€Life Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 2070036.	3.1	27
32	TiO2 Nanobelt@Co9S8 Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries. Nanomaterials, 2017, 7, 252.	1.9	26
33	Spherical-graphite/nano-Mn2O3 composites as advanced anode materials for lithium half/full batteries. Journal of Alloys and Compounds, 2021, 853, 157109.	2.8	20
34	Effects of I ₃ ^{â^'} Electrolyte Additive on the Electrochemical Performance of Zn Anodes and Zn/MnO ₂ Batteries. Batteries and Supercaps, 2022, 5, .	2.4	20
35	Zn-Ce based bimetallic organic frameworks derived ZnSe/CeO2 nanoparticles encapsulated by reduced graphene oxide for enhanced sodium-ion and lithium-ion storage. Journal of Alloys and Compounds, 2021, 875, 159903.	2.8	18
36	Carbon-coated hierarchical spinel Fe1.5V1.5O4 nanorods: A promising anode material for enhanced lithium storage. Journal of Alloys and Compounds, 2018, 746, 108-115.	2.8	17

Fuyi Jiang

#	Article	IF	CITATIONS
37	Synthesis and magnetic characterizations of uniform iron oxide nanoparticles. Physica B: Condensed Matter, 2014, 443, 1-5.	1.3	15
38	Fe3O4 Hollow Nanosphere-Coated Spherical-Graphite Composites: A High-Rate Capacity and Ultra-Long Cycle Life Anode Material for Lithium Ion Batteries. Nanomaterials, 2019, 9, 996.	1.9	15
39	Nano-SiO ₂ coating enabled uniform Na stripping/plating for dendrite-free and long-life sodium metal batteries. Nanoscale Advances, 2019, 1, 4989-4994.	2.2	14
40	Recycled Carbon Fiber-Supported Polyaniline/Manganese Dioxide Prepared via One-Step Electrodeposition for Flexible Supercapacitor Integrated Electrodes. Polymers, 2018, 10, 1152.	2.0	13
41	SnS2 Nanosheets with RGO Modification as High-Performance Anode Materials for Na-Ion and K-Ion Batteries. Nanomaterials, 2021, 11, 1932.	1.9	13
42	Edge dislocation and superstructure in MgB2superconducting crystals. Superconductor Science and Technology, 2005, 18, 1513-1516.	1.8	10
43	Incorporation of iodine into the channels of AlPO4-5 crystals. Journal of Physics and Chemistry of Solids, 2007, 68, 1552-1555.	1.9	10
44	CoP Nanoparticles Intertwined with Graphene Nanosheets as a Superior Anode for Half/Full Sodiumâ€ion Batteries. ChemElectroChem, 2021, 8, 2022-2027.	1.7	10
45	ZnFe2O4 nanoparticles decorated Ti3C2Tx nanosheet as anode materials for enhanced lithium storage. Materials Letters, 2019, 253, 162-165.	1.3	9
46	In2S3 nanosheets array anchored on reduced graphene oxide as high-performance anode for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165506.	2.8	8
47	A photo-/thermo-dual-responsible Cs _x WO ₃ /PNIPAM composite hydrogel for energy-efficient windows. Materials Research Express, 2019, 6, 085708.	0.8	7
48	Hierarchical dopamine-derived N-doped carbon-encapsulated iron oxide/sulfide hollow nanospheres for enhanced lithium-ion storage. Ionics, 2022, 28, 2143-2154.	1.2	7
49	Long-life and efficient sodium metal anodes enabled by a sodiophilic matrix. Journal of Alloys and Compounds, 2022, 910, 164762.	2.8	7
50	Single crystal growth of MgB2 by evaporating Mg-flux method. Journal of Crystal Growth, 2006, 289, 626-629.	0.7	5
51	Straightforward preparation of Na2(TiO)SiO4 hollow nanotubes as anodes for ultralong cycle life lithium ion battery. Dalton Transactions, 2021, 50, 2521-2529.	1.6	3
52	Lithium tungsten bronze modified carbon fiber membrane current collectors for dendrite-free metal lithium anodes. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50, 562-570.	0.3	1