Richard T Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/553359/richard-t-lee-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

139	14,885	58	121
papers	citations	h-index	g-index
155 ext. papers	17,313 ext. citations	13.4 avg, IF	6.67 L-index

#	Paper	IF	Citations
139	Demographic and Clinical Predictors of Engaging in Tobacco Cessation Counseling at a Comprehensive Cancer Center <i>JCO Oncology Practice</i> , 2022 , OP2100458	2.3	O
138	Heart regeneration: 20 years of progress and renewed optimism Developmental Cell, 2022, 57, 424-439	910.2	3
137	SARS-CoV-2 Susceptibility and Gene Variations Within Diverse Ethnic Backgrounds <i>Frontiers in Genetics</i> , 2022 , 13, 888025	4.5	O
136	Mistletoe Extract Viscum Fraxini-2 for Treatment of Advanced Hepatocellular Carcinoma: A Case Series. <i>Case Reports in Oncology</i> , 2021 , 14, 224-231	1	1
135	Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. <i>Stem Cell Research and Therapy</i> , 2021 , 12, 177	8.3	10
134	Senescence mechanisms and targets in the heart. Cardiovascular Research, 2021,	9.9	8
133	In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. <i>Cell Reports</i> , 2021 , 35, 109284	10.6	7
132	Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: Current concepts and future directions. <i>Trends in Cardiovascular Medicine</i> , 2021 , 31, 85-90	6.9	5
131	Prevalence of potential interactions of medications, including herbs and supplements, before, during, and after chemotherapy in patients with breast and prostate cancer. <i>Cancer</i> , 2021 , 127, 1827-18	35 ⁴	5
130	SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. <i>Cell Stem Cell</i> , 2021 ,	18	4
129	Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice. <i>Scientific Reports</i> , 2020 , 10, 4561	4.9	7
128	Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6733-6740	11.5	14
127	Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice. <i>Aging Cell</i> , 2020 , 19, e13159	9.9	16
126	Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells via p53-Induced Quiescence. <i>Circulation</i> , 2020 , 141, 285-300	16.7	36
125	Thioredoxin Interacting Protein Is Required for a Chronic Energy-Rich Diet to Promote Intestinal Fructose Absorption. <i>IScience</i> , 2020 , 23, 101521	6.1	3
124	Utilization of Complementary Alternative Medicine, Diet, and Exercise Among Women at High Risk for Developing Breast Cancer. <i>Integrative Cancer Therapies</i> , 2020 , 19, 1534735420922610	3	О
123	Sustained Activation of AMPK Enhances Differentiation of Human iPSC-Derived Cardiomyocytes via Sirtuin Activation. <i>Stem Cell Reports</i> , 2020 , 15, 498-514	8	5

(2017-2020)

122	The Influence of Spirituality and Religiosity on US OncologistsSPersonal Use of and Clinical Practices Regarding Complementary and Alternative Medicine. <i>Integrative Cancer Therapies</i> , 2020 , 19, 1534735420945769	3	1
121	Molecular mechanisms of heart regeneration. <i>Seminars in Cell and Developmental Biology</i> , 2020 , 100, 20-28	7.5	16
120	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. <i>Chemical Reviews</i> , 2019 , 119, 11352-11390	68.1	24
119	Steady-state and regenerative hematopoiesis occurs normally in mice in the absence of GDF11. <i>Blood</i> , 2019 , 134, 1712-1716	2.2	6
118	IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2646-2651	11.5	36
117	Analysis of Cre-mediated genetic deletion of in cardiomyocytes of young mice. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2019 , 317, H201-H212	5.2	12
116	Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. <i>Immunity</i> , 2019 , 50, 1262-1275.e4	32.3	83
115	The continuous heart failure spectrum: moving beyond an ejection fraction classification. <i>European Heart Journal</i> , 2019 , 40, 2155-2163	9.5	107
114	Dysregulation of IL-33/ST2 signaling and myocardial periarteriolar fibrosis. <i>Journal of Molecular and Cellular Cardiology</i> , 2019 , 128, 179-186	5.8	7
113	Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus. <i>Scientific Reports</i> , 2019 , 9, 18613	4.9	3
112	Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. <i>Circulation</i> , 2018 , 137, 2152-2165	16.7	36
111	Molecular characterization of latent GDF8 reveals mechanisms of activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E866-E875	11.5	23
110	Exercise induces new cardiomyocyte generation in the adult mammalian heart. <i>Nature Communications</i> , 2018 , 9, 1659	17.4	83
109	Engineering of Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Using Substrates with Multiscale Topography. <i>Advanced Functional Materials</i> , 2018 , 28, 1707378	15.6	27
108	Biomedical Applications: Engineering of Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Using Substrates with Multiscale Topography (Adv. Funct. Mater. 19/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870128	15.6	1
107	Knockout of Txnip in the Intestinal Epithelial Cells Abrogates the High Fat Diet-Induced Fructose Uptake in Mice. <i>FASEB Journal</i> , 2018 , 32, 757.2	0.9	
106	Apolipoprotein E is a pancreatic extracellular factor that maintains mature Etell gene expression. <i>PLoS ONE</i> , 2018 , 13, e0204595	3.7	4
105	Structural basis for potency differences between GDF8 and GDF11. <i>BMC Biology</i> , 2017 , 15, 19	7.3	63

104	Soluble interleukin-13rd: a circulating regulator of glucose. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2017 , 313, E663-E671	6	4
103	Multiscale technologies for treatment of ischemic cardiomyopathy. <i>Nature Nanotechnology</i> , 2017 , 12, 845-855	28.7	84
102	Cardiomyocyte Regeneration: A Consensus Statement. Circulation, 2017, 136, 680-686	16.7	287
101	Adipocyte arrestin domain-containing 3 protein (Arrdc3) regulates uncoupling protein 1 (Ucp1) expression in white adipose independently of canonical changes in Eadrenergic receptor signaling. <i>PLoS ONE</i> , 2017 , 12, e0173823	3.7	6
100	Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. <i>Circulation Research</i> , 2016 , 118, 29-37	15.7	122
99	Basic research: Suffocating the heart to stimulate regeneration. <i>Nature Reviews Cardiology</i> , 2016 , 14, 7-8	14.8	
98	The Future of Cardiovascular Regenerative Medicine. <i>Circulation</i> , 2016 , 133, 2618-25	16.7	26
97	Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment. <i>Tissue Engineering - Part A</i> , 2016 , 22, 917-27	3.9	18
96	Mechanisms of Cardiac Regeneration. Developmental Cell, 2016, 36, 362-74	10.2	156
95	Diabetes regulates fructose absorption through thioredoxin-interacting protein. <i>ELife</i> , 2016 , 5,	8.9	27
94	Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. <i>Small</i> , 2016 , 12, 612-22	11	69
93	A Breakdown in Cooperativity Leads to Cardiac Identity Crisis. <i>Cell</i> , 2016 , 167, 1674-1676	56.2	1
92	Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. <i>Circulation Research</i> , 2016 , 118, 1125-41; discussion 1142	15.7	116
91	Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797	8	136
90	Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. <i>Developmental Cell</i> , 2015 , 34, 387-99	10.2	162
89	Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9046-51	11.5	28
88	A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. <i>Nature Communications</i> , 2015 , 6, 7014	17.4	122
87	Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels. Tissue Engineering - Part A, 2015, 21, 637-46	3.9	23

(2013-2015)

86	High Affinity, Multimeric IICP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors. <i>PLoS ONE</i> , 2015 , 10, e0129600	3.7	13
85	Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7249-54	11.5	102
84	Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. <i>Circulation Research</i> , 2015 , 116, 804-15	15.7	97
83	Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. <i>Science</i> , 2014 , 344, 649-52	33.3	568
82	Thioredoxin-interacting protein and myocardial mitochondrial function in ischemia-reperfusion injury. <i>Trends in Cardiovascular Medicine</i> , 2014 , 24, 75-80	6.9	23
81	Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress. <i>EMBO Molecular Medicine</i> , 2014 , 6, 732-43	12	35
8o	Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection. <i>Stem Cell Reports</i> , 2014 , 3, 1	8	58
79	Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. <i>Arthritis and Rheumatology</i> , 2014 , 66, 1247-55	9.5	33
78	Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. <i>Science</i> , 2014 , 344, 630-4	33.3	655
77	Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. <i>Circulation Research</i> , 2014 , 115, 97-107	15.7	124
76	Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1403-8	11.5	164
75	Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. <i>Stem Cell Research</i> , 2014 , 13, 532-41	1.6	87
74	Protein engineering for cardiovascular therapeutics: untapped potential for cardiac repair. <i>Circulation Research</i> , 2013 , 113, 933-43	15.7	38
73	An engineered bivalent neuregulin protects against doxorubicin-induced cardiotoxicity with reduced proneoplastic potential. <i>Circulation</i> , 2013 , 128, 152-61	16.7	69
72	Model systems for cardiovascular regenerative biology. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2013 , 3, a014019	5.4	22
71	Mammalian heart renewal by pre-existing cardiomyocytes. <i>Nature</i> , 2013 , 493, 433-6	50.4	918
70	Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. <i>Cell</i> , 2013 , 152, 570) 5 8632	701
69	Is heart regeneration on the right track?. <i>Nature Medicine</i> , 2013 , 19, 412-3	50.5	14

68	Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. <i>Cell</i> , 2013 , 153, 828-39	56.2	629
67	Cardiac stem cell therapy and the promise of heart regeneration. <i>Cell Stem Cell</i> , 2013 , 12, 689-98	18	292
66	Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. <i>Antioxidants and Redox Signaling</i> , 2013 , 18, 1165-207	8.4	238
65	A sensitive chemotaxis assay using a novel microfluidic device. <i>BioMed Research International</i> , 2013 , 2013, 373569	3	9
64	Microbead-based biomimetic synthetic neighbors enhance survival and function of rat pancreatic Etells. <i>Scientific Reports</i> , 2013 , 3, 2863	4.9	30
63	Proteins and small molecules for cellular regenerative medicine. <i>Physiological Reviews</i> , 2013 , 93, 311-2	5 47.9	26
62	Pericyte progenitors at the crossroads between fibrosis and regeneration. <i>Circulation Research</i> , 2013 , 112, 230-2	15.7	7
61	Keep PNUTS in your heart. Circulation Research, 2013, 113, 97-9	15.7	10
60	Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. <i>Journal of Clinical Investigation</i> , 2013 , 123, 4208-18	15.9	87
59	An expanded family of arrestins regulate metabolism. <i>Trends in Endocrinology and Metabolism</i> , 2012 , 23, 216-22	8.8	80
58	Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. <i>Nature</i> , 2012 , 481, 516-9	50.4	224
57	Interleukin-33 primes mast cells for activation by IgG immune complexes. <i>PLoS ONE</i> , 2012 , 7, e47252	3.7	13
56	Cardiovascular Mechanotransduction 2012 , 173-186		3
55	Interleukin 33 as a mechanically responsive cytokine secreted by living cells. <i>Journal of Biological Chemistry</i> , 2012 , 287, 6941-8	5.4	216
54	Role of ST2 in non-ST-elevation acute coronary syndrome in the MERLIN-TIMI 36 trial. <i>Clinical Chemistry</i> , 2012 , 58, 257-66	5.5	115
53	Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. <i>Science Translational Medicine</i> , 2012 , 4, 138ra80	17.5	43
52	Introduction to Cardiac Disease 2012 , 1-10		
51	Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. <i>Journal of Clinical Investigation</i> , 2012 , 122, 267-79	15.9	112

(2010-2011)

50	The arrestin domain-containing 3 protein regulates body mass and energy expenditure. <i>Cell Metabolism</i> , 2011 , 14, 671-83	24.6	86
49	Identification of targeting peptides for ischemic myocardium by in vivo phage display. <i>Journal of Molecular and Cellular Cardiology</i> , 2011 , 50, 841-8	5.8	72
48	Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. <i>Cell Stem Cell</i> , 2011 , 8, 389-98	18	338
47	Regeneration of the heart. <i>EMBO Molecular Medicine</i> , 2011 , 3, 701-12	12	104
46	Biomaterials to enhance stem cell function in the heart. Circulation Research, 2011, 109, 910-22	15.7	148
45	Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease. <i>Circulation</i> , 2011 , 123, 1306-15	16.7	42
44	Stromal cell-derived factor-1 retention and cardioprotection for ischemic myocardium. <i>Circulation: Heart Failure</i> , 2011 , 4, 509-18	7.6	63
43	Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability. <i>Journal of Biological Chemistry</i> , 2011 , 286, 29139-29145	5.4	41
42	Engineered bivalent ligands to bias ErbB receptor-mediated signaling and phenotypes. <i>Journal of Biological Chemistry</i> , 2011 , 286, 27729-40	5.4	19
41	Patching up the myocardium. Circulation Research, 2011, 109, 480-1	15.7	O
40	Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity. <i>Diabetes</i> , 2010 , 59, 1424-34	0.9	106
39	Mechanical stretch and intimal hyperplasia: the missing link?. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2010 , 30, 459-60	9.4	10
38	Intramyocardial fibroblast myocyte communication. Circulation Research, 2010, 106, 47-57	15.7	251
37	Synovial fibroblasts promote the expression and granule accumulation of tryptase via interleukin-33 and its receptor ST-2 (IL1RL1). <i>Journal of Biological Chemistry</i> , 2010 , 285, 21478-86	5.4	53
36	The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release. <i>Journal of Cell Science</i> , 2010 , 123, 2308-18	5.3	29
35	Protein therapeutics for cardiac regeneration after myocardial infarction. <i>Journal of Cardiovascular Translational Research</i> , 2010 , 3, 469-77	3.3	89
34	A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment. <i>Biomedical Microdevices</i> , 2010 , 12, 1027-41	3.7	31
33	Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. <i>Arthritis and Rheumatism</i> 2010 62 3686-94		50

32	Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. <i>Circulation: Heart Failure</i> , 2009 , 2, 684-91	7.6	256
31	Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. <i>Clinical Chemistry</i> , 2009 , 55, 1108-17	5.5	219
30	Biochemical and mechanical dysfunction in a mouse model of desmin-related myopathy. <i>Circulation Research</i> , 2009 , 104, 1021-8	15.7	42
29	Three-dimensional cardiac architecture determined by two-photon microtomy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 044029	3.5	7
28	Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. <i>Circulation</i> , 2009 , 120, 876-87	16.7	178
27	Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. <i>Journal of Biological Chemistry</i> , 2009 , 284, 24996-5003	5.4	136
26	Genetically engineered resistance for MMP collagenases promotes abdominal aortic aneurysm formation in mice infused with angiotensin II. <i>Laboratory Investigation</i> , 2009 , 89, 315-26	5.9	48
25	Salvianolic acid B-vitamin C synergy in cardiac differentiation from embryonic stem cells. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 387, 723-8	3.4	24
24	Cardiovascular regeneration: pushing and pulling on progenitors. Cell Stem Cell, 2009, 4, 277-8	18	10
23	Development biology. Turnover after the fallout. <i>Science</i> , 2009 , 324, 47-8	33.3	20
22	ST2 and adrenomedullin in heart failure. <i>Heart Failure Clinics</i> , 2009 , 5, 515-27	3.3	6
21	Mechanical properties of interphase nuclei probed by cellular strain application. <i>Methods in Molecular Biology</i> , 2009 , 464, 13-26	1.4	16
20	Stem-cell therapy for cardiac disease. <i>Nature</i> , 2008 , 451, 937-42	50.4	948
19	The IL-33/ST2 pathway: therapeutic target and novel biomarker. <i>Nature Reviews Drug Discovery</i> , 2008 , 7, 827-40	64.1	496
18	Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. <i>Aging Cell</i> , 2008 , 7, 383-93	9.9	151
17	Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production. <i>Journal of Biological Chemistry</i> , 2008 , 283, 2397-406	5.4	132
16	Mechanical control of tissue morphogenesis. Circulation Research, 2008, 103, 234-43	15.7	121
15	Vascularization as a potential enemy in valvular heart disease. Circulation, 2008, 118, 1694-6	16.7	11

LIST OF PUBLICATIONS

14	Engineering insulin-like growth factor-1 for local delivery. FASEB Journal, 2008, 22, 1886-93	0.9	29
13	Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. <i>Circulation</i> , 2008 , 117, 1936-44	16.7	238
12	Time-Saving Benefits of Intravital Staining. Journal of Histotechnology, 2008, 31, 129-134	1.3	1
11	Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 87, 222-8	3.5	54
10	Bioengineered Scaffolds: Myocytes, Endothelial Cells and Cardiac Repair 2007 , 183-191		
9	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. <i>Nature Medicine</i> , 2007 , 13, 970-4	50.5	621
8	Local delivery of proteins and the use of self-assembling peptides. <i>Drug Discovery Today</i> , 2007 , 12, 561	-8 8.8	87
7	Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. <i>Circulation</i> , 2007 , 116, 1683-92	16.7	304
6	TXNIP regulates peripheral glucose metabolism in humans. <i>PLoS Medicine</i> , 2007 , 4, e158	11.6	336
5	Cell nuclei spin in the absence of lamin b1. <i>Journal of Biological Chemistry</i> , 2007 , 282, 20015-26	5.4	72
4	Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. <i>Circulation Research</i> , 2007 , 101, 1328-38	15.7	83
3	IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. <i>Journal of Clinical Investigation</i> , 2007 , 117, 1538-49	15.9	717
2	Torn apart: membrane rupture in muscular dystrophies and associated cardiomyopathies. <i>Journal of Clinical Investigation</i> , 2007 , 117, 1749-52	15.9	14
1	Physical and Mechanical Stress129-139		