Kulcheski, F R

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533305/publications.pdf Version: 2024-02-01

KILICHESKI F.P.

#	Article	IF	CITATIONS
1	Circular RNAs are miRNA sponges and can be used as a new class of biomarker. Journal of Biotechnology, 2016, 238, 42-51.	3.8	645
2	Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 2011, 12, 307.	2.8	313
3	The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Analytical Biochemistry, 2010, 406, 185-192.	2.4	138
4	<scp>THO</scp> 2, a core member of the <scp>THO</scp> / <scp>TREX</scp> complex, is required for micro <scp>RNA</scp> production in Arabidopsis. Plant Journal, 2015, 82, 1018-1029.	5.7	68
5	KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14096-14101.	7.1	65
6	Molecular Phylogenetic Analysis of Petunia Juss. (Solanaceae). Genetica, 2006, 126, 3-14.	1.1	61
7	NPK macronutrients and microRNA homeostasis. Frontiers in Plant Science, 2015, 6, 451.	3.6	55
8	Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution, 2016, 96, 55-69.	2.7	51
9	Genome-wide analysis of the Clycerol-3-Phosphate Acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs. Genetics and Molecular Biology, 2018, 41, 355-370.	1.3	48
10	Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genetics and Molecular Biology, 2016, 39, 524-538.	1.3	34
11	De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway. Plant Science, 2014, 229, 238-246.	3.6	33
12	Salt stress affects mRNA editing in soybean chloroplasts. Genetics and Molecular Biology, 2017, 40, 200-208.	1.3	28
13	Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Progress in Lipid Research, 2019, 73, 46-64.	11.6	28
14	Molecular mapping of Pc68, a crown rust resistance gene in Avena sativa. Euphytica, 2010, 175, 423-432.	1.2	22
15	Unveiling Chloroplast RNA Editing Events Using Next Generation Small RNA Sequencing Data. Frontiers in Plant Science, 2017, 8, 1686.	3.6	17
16	Novel and conserved microRNAs in soybean floral whorls. Gene, 2016, 575, 213-223.	2.2	12
17	Transcriptomics analysis of Psidium cattleyanum Sabine (Myrtaceae) unveil potential genes involved in fruit pigmentation. Genetics and Molecular Biology, 2020, 43, e20190255.	1.3	8
18	De novo assembly of Vriesea carinata leaf transcriptome to identify candidate cysteine-proteases. Gene, 2019, 691, 96-105.	2.2	1