Xiaoding Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533153/publications.pdf

Version: 2024-02-01

		46984	74108
141	6,811	47	75
papers	citations	h-index	g-index
150	150	150	6575
152	152	152	6575
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nature Protocols, 2016, 11, 1244-1263.	5.5	320
2	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	8.2	298
3	New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides. Advanced Functional Materials, 2018, 28, 1802151.	7.8	223
4	An Intracellular H ₂ O ₂ â€Responsive AIEgen for the Peroxidaseâ€Mediated Selective Imaging and Inhibition of Inflammatory Cells. Angewandte Chemie - International Edition, 2018, 57, 3123-3127.	7.2	197
5	Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chemical Science, 2020, 11, 3405-3417.	3.7	182
6	Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. Journal of Medicinal Chemistry, 2020, 63, 1996-2012.	2.9	165
7	Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS Nano, 2020, 14, 854-866.	7.3	161
8	Improving Imageâ€Guided Surgical and Immunological Tumor Treatment Efficacy by Photothermal and Photodynamic Therapies Based on a Multifunctional NIR AlEgen. Advanced Materials, 2021, 33, e2101158.	11.1	125
9	Modular Design of Peptide- or DNA-Modified AlEgen Probes for Biosensing Applications. Accounts of Chemical Research, 2019, 52, 3064-3074.	7.6	122
10	Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AlEgens. Analytical Chemistry, 2015, 87, 6822-6827.	3.2	119
11	A Multifunctional Peptideâ€Conjugated AlEgen for Efficient and Sequential Targeted Gene Delivery into the Nucleus. Angewandte Chemie - International Edition, 2019, 58, 5049-5053.	7.2	119
12	Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials, 2019, 218, 119330.	5.7	118
13	Role of outer surface probes for regulating ion gating of nanochannels. Nature Communications, 2018, 9, 40.	5. 8	117
14	Recent advances in stimuliâ€responsive theranostic systems with aggregationâ€induced emission characteristics. Aggregate, 2021, 2, 48-65.	5. 2	113
15	Recent Advances in Solid Nanopore/Channel Analysis. Analytical Chemistry, 2018, 90, 577-588.	3.2	112
16	Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nature Communications, 2018, 9, 4557.	5.8	112
17	Organic Dots Based on AlEgens for Twoâ€Photon Fluorescence Bioimaging. Small, 2016, 12, 6430-6450.	5.2	107
18	The development of nanostructure assisted isothermal amplification in biosensors. Chemical Society Reviews, 2016, 45, 1738-1749.	18.7	99

#	Article	IF	Citations
19	Dual-targeted peptide-conjugated multifunctional fluorescent probe with AlEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chemical Science, 2017, 8, 4571-4578.	3.7	99
20	Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups. Chemical Science, 2016, 7, 4527-4536.	3.7	97
21	Self-Guiding Polymeric Prodrug Micelles with Two Aggregation-Induced Emission Photosensitizers for Enhanced Chemo-Photodynamic Therapy. ACS Nano, 2021, 15, 3026-3037.	7.3	94
22	A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AlEgens and graphene oxide. Talanta, 2019, 198, 71-77.	2.9	90
23	Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization. ACS Applied Materials & Interfaces, 2015, 7, 14965-14974.	4.0	86
24	Protease-Responsive Prodrug with Aggregation-Induced Emission Probe for Controlled Drug Delivery and Drug Release Tracking in Living Cells. Analytical Chemistry, 2016, 88, 8913-8919.	3.2	84
25	Facile, Fast-Responsive, and Photostable Imaging of Telomerase Activity in Living Cells with a Fluorescence Turn-On Manner. Analytical Chemistry, 2016, 88, 3289-3294.	3.2	84
26	A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Communications Biology, 2018, 1, 202.	2.0	81
27	External Stimuli Responsive Liquidâ€Infused Surfaces Switching between Slippery and Nonslippery States: Fabrications and Applications. Advanced Functional Materials, 2020, 30, 1901130.	7.8	80
28	Sensitive and Bidirectional Detection of Urine Telomerase Based on the Four Detection-Color States of Difunctional Gold Nanoparticle Probe. Analytical Chemistry, 2014, 86, 9781-9785.	3.2	76
29	Targetâ€Specific 3D DNA Gatekeepers for Biomimetic Nanopores. Advanced Materials, 2015, 27, 2090-2095.	11.1	76
30	Tumorâ€Triggered Disassembly of a Multipleâ€Agentâ€Therapy Probe for Efficient Cellular Internalization. Angewandte Chemie - International Edition, 2020, 59, 20405-20410.	7.2	74
31	Quencher Group Induced High Specificity Detection of Telomerase in Clear and Bloody Urines by AIEgens. Analytical Chemistry, 2015, 87, 9487-9493.	3.2	70
32	Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8998-9003.	4.0	70
33	Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples. Biosensors and Bioelectronics, 2019, 124-125, 199-204.	5.3	70
34	AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosensors and Bioelectronics, 2018, 111, 124-130.	5.3	69
35	DNA-Conjugated Amphiphilic Aggregation-Induced Emission Probe for Cancer Tissue Imaging and Prognosis Analysis. Analytical Chemistry, 2018, 90, 8162-8169.	3.2	64
36	Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AlEgens. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16813-16818.	4.0	61

#	Article	IF	CITATIONS
37	Intriguing "chameleon―fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials, 2019, 203, 43-51.	5.7	61
38	9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano, 2021, 15, 20042-20055.	7.3	61
39	Construction of AlEgens-Based Bioprobe with Two Fluorescent Signals for Enhanced Monitor of Extracellular and Intracellular Telomerase Activity. Analytical Chemistry, 2017, 89, 2073-2079.	3.2	60
40	Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. NPG Asia Materials, 2018, 10, 177-189.	3.8	57
41	Photoactivated Specific mRNA Detection in Single Living Cells by Coupling "Signal-on―Fluorescence and "Signal-off―Electrochemical Signals. Nano Letters, 2018, 18, 5116-5123.	4.5	56
42	Ratiometric Fluorescent Bioprobe for Highly Reproducible Detection of Telomerase in Bloody Urines of Bladder Cancer Patients. ACS Sensors, 2016, 1, 572-578.	4.0	55
43	Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release. Nanoscale, 2016, 8, 5089-5097.	2.8	53
44	A highly sensitive and facile graphene oxide-based nucleic acid probe: Label-free detection of telomerase activity in cancer patient's urine using AlEgens. Biosensors and Bioelectronics, 2017, 89, 417-421.	5. 3	53
45	Advances in the detection of telomerase activity using isothermal amplification. Theranostics, 2017, 7, 1847-1862.	4.6	52
46	High frequency, calibration-free molecular measurements <i>iin situ</i> iin the living body. Chemical Science, 2019, 10, 10843-10848.	3.7	52
47	A new turn-on chemosensor for bio-thiols based on the nanoaggregates of a tetraphenylethene-coumarin fluorophore. Nanoscale, 2014, 6, 14691-14696.	2.8	47
48	Functional "Janus―Annulus in Confined Channels. Advanced Materials, 2016, 28, 460-465.	11.1	47
49	Highly Robust Nanopore-Based Dual-Signal-Output Ion Detection System for Achieving Three Successive Calibration Curves. Analytical Chemistry, 2016, 88, 2386-2391.	3.2	47
50	Modular Peptide Probe for Pre/Intra/Postoperative Therapeutic to Reduce Recurrence in Ovarian Cancer. ACS Nano, 2020, 14, 14698-14714.	7.3	46
51	Rational Designed Bipolar, Conjugated Polymer-DNA Composite Beacon for the Sensitive Detection of Proteins and Ions. Analytical Chemistry, 2015, 87, 3890-3894.	3.2	44
52	Measuring macromolecular crowding in cells through fluorescence anisotropy imaging with an AIE fluorogen. Chemical Communications, 2017, 53, 2874-2877.	2.2	44
53	MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy. Talanta, 2019, 202, 591-599.	2.9	44
54	Deep Downregulation of PD‣1 by Caged Peptideâ€Conjugated AlEgen/miR‣40 Nanoparticles for Enhanced Immunotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44

#	Article	IF	Citations
55	Biomacromoleculeâ€Functionalized AlEgens for Advanced Biomedical Studies. Small, 2019, 15, 1804839.	5.2	43
56	Aggregation-induced emission luminogens for assisted cancer surgery. Coordination Chemistry Reviews, 2022, 464, 214552.	9.5	43
57	Sensitive Zn ²⁺ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst, The, 2016, 141, 3626-3629.	1.7	41
58	PEGâ€Polymer Encapsulated Aggregationâ€Induced Emission Nanoparticles for Tumor Theranostics. Advanced Healthcare Materials, 2021, 10, e2101036.	3.9	41
59	High Fluorescence Efficiencies and Large Stokes Shifts of Folded Fluorophores Consisting of a Pair of Alkenyl-Tethered, π-Stacked Oligo- <i>p</i> p	2.4	40
60	Combining Protein and miRNA Quantification for Bladder Cancer Analysis. ACS Applied Materials & Interfaces, 2017, 9, 23420-23427.	4.0	39
61	Tetrathienylethene based red aggregation-enhanced emission probes: super red-shifted mechanochromic behavior and highly photostable cell membrane imaging. Materials Chemistry Frontiers, 2018, 2, 1126-1136.	3.2	39
62	A low background D–A–D type fluorescent probe for imaging of biothiols in living cells. Journal of Materials Chemistry B, 2018, 6, 5248-5255.	2.9	38
63	Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano, 2019, 6, 100034.	2.3	36
64	Electrocatalytic Hydrogen Evolution Reaction Related to Nanochannel Materials. Small Structures, 2021, 2, 2100076.	6.9	36
65	Aggregation-induced emission luminogens reveal cell cycle-dependent telomerase activity in cancer cells. National Science Review, 2021, 8, nwaa306.	4.6	35
66	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
67	Nanococktail Based on AlEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics, 2020, 10, 2260-2272.	4.6	32
68	Coordination of the electrical and optical signals revealing nanochannels with an â€~onion-like' gating mechanism and its sensing application. NPG Asia Materials, 2016, 8, e234-e234.	3.8	31
69	A Multifunctional Peptideâ€Conjugated AlEgen for Efficient and Sequential Targeted Gene Delivery into the Nucleus. Angewandte Chemie, 2019, 131, 5103-5107.	1.6	31
70	Facile Probe Design: Fluorescent Amphiphilic Nucleic Acid Probes without Quencher Providing Telomerase Activity Imaging Inside Living Cells. Analytical Chemistry, 2016, 88, 6621-6626.	3.2	30
71	Biological and chemical sensing applications based on special wettable surfaces. TrAC - Trends in Analytical Chemistry, 2018, 108, 183-194.	5.8	30
72	Red AIE conjugated polyelectrolytes for long-term tracing and image-guided photodynamic therapy of tumors. Science China Chemistry, 2020, 63, 1815-1824.	4.2	30

#	Article	IF	Citations
73	Imparting biomolecules to a metal-organic framework material by controlled DNA tetrahedron encapsulation. Scientific Reports, 2014, 4, 5929.	1.6	29
74	An AlEgens and exonuclease III aided quadratic amplification assay for detecting and cellular imaging of telomerase activity. Science Bulletin, 2017, 62, 997-1003.	4.3	29
75	Enzyme and AlEgens Modulated Solidâ€State Nanochannels: In Situ and Noninvasive Monitoring of H ₂ O ₂ Released from Living Cells. Small Methods, 2020, 4, 1900432.	4.6	29
76	Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angewandte Chemie - International Edition, 2021, 60, 18280-18288.	7.2	29
77	Detection of adenine-rich ssDNA based on thymine-substituted tetraphenylethene with aggregation-induced emission characteristics. RSC Advances, 2014, 4, 33307.	1.7	28
78	A photostable AIE fluorogen for lysosome-targetable imaging of living cells. Journal of Materials Chemistry B, 2016, 4, 5412-5417.	2.9	28
79	Effective Therapy of Drugâ€Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. Small, 2022, 18, e2200743.	5.2	27
80	Aggregation-induced emission luminogens for RONS sensing. Journal of Materials Chemistry B, 2020, 8, 3357-3370.	2.9	26
81	Biocompatible AlEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics, 2021, 11, 3710-3724.	4.6	26
82	A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses. NPG Asia Materials, 2021, 13, .	3.8	26
83	Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices. Nature Protocols, 2021, 16, 4201-4226.	5.5	26
84	Nanopore-Based DNA-Probe Sequence-Evolution Method Unveiling Characteristics of Protein–DNA Binding Phenomena in a Nanoscale Confined Space. Analytical Chemistry, 2015, 87, 4037-4041.	3.2	25
85	Fabrication of "Plug and Play―Channels with Dual Responses by Host–Guest Interactions. Small, 2017, 13, 1600287.	5.2	25
86	Few-layered CuInP ₂ S ₆ nanosheet with sulfur vacancy boosting photocatalytic hydrogen evolution. CrystEngComm, 2021, 23, 591-598.	1.3	25
87	A red-emission probe for intracellular biothiols imaging with a large Stokes shift. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 90-96.	2.0	24
88	Enzyme-Responsive Peptide-Based AIE Bioprobes. Topics in Current Chemistry, 2020, 378, 47.	3.0	24
89	A Diverse Micromorphology of Photonic Crystal Chips for Multianalyte Sensing. Small, 2021, 17, e2006723.	5.2	23
90	A New Disubstituted Polyacetylene Bearing 6â€Benzylaminopurine Moieties: Postfunctional Synthetic Strategy and Sensitive Chemosensor Towards Copper and Cobalt Ions. Macromolecular Rapid Communications, 2013, 34, 759-766.	2.0	22

#	Article	IF	Citations
91	DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Science China Chemistry, 2017, 60, 311-318.	4.2	22
92	A peptide-AlEgen nanocomposite mediated whole cancer immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials, 2022, 285, 121528.	5.7	21
93	A highly sensitive DNA-AlEgen-based "turn-on―fluorescence chemosensor for amplification analysis of Hg2+ ions in real samples and living cells. Science China Chemistry, 2017, 60, 663-669.	4.2	20
94	An Intracellular H ₂ O ₂ â€Responsive AlEgen for the Peroxidaseâ€Mediated Selective Imaging and Inhibition of Inflammatory Cells. Angewandte Chemie, 2018, 130, 3177-3181.	1.6	19
95	Engineering Biosensors with Dual Programmable Dynamic Ranges. Analytical Chemistry, 2018, 90, 1506-1510.	3.2	19
96	Integrated Solid-State Nanopore Electrochemistry Array for Sensitive, Specific, and Label-Free Biodetection. Langmuir, 2018, 34, 14787-14795.	1.6	19
97	Analyte-responsive fluorescent probes with AIE characteristic based on the change of covalent bond. Science China Materials, 2019, 62, 1236-1250.	3.5	19
98	Construction of a Highly Sensitive Thiolâ€Reactive AlEgenâ€Peptide Conjugate for Monitoring Protein Unfolding and Aggregation in Cells. Advanced Healthcare Materials, 2021, 10, e2101300.	3.9	19
99	Tunning Intermolecular Interaction of Peptide-Conjugated AlEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-16263.	3.2	19
100	Bioinspired Slippery Lubricant-Infused Surfaces With External Stimuli Responsive Wettability: A Mini Review. Frontiers in Chemistry, 2019, 7, 826.	1.8	18
101	A cell membrane-anchored nanoassembly with self-reporting property for enhanced second near-infrared photothermal therapy. Nano Today, 2021, 41, 101312.	6.2	18
102	An ultralow concentration of two-photon fluorescent probe for rapid and selective detection of lysosomal cysteine in living cells. Talanta, 2019, 204, 762-768.	2.9	17
103	The opposite gating behaviors of solid-state nanochannels modified with long and short polymer chains. Chemical Communications, 2015, 51, 10146-10149.	2.2	16
104	One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. Chinese Chemical Letters, 2019, 30, 1557-1564.	4.8	16
105	Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Transactions, 2019, 48, 5879-5891.	1.6	16
106	Cooperation therapy between anti-growth by photodynamic-AlEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Theranostics, 2020, 10, 2385-2398.	4.6	16
107	AlEgenâ€Based Lifetimeâ€Probes for Precise Furin Quantification and Identification of Cell Subtypes. Advanced Materials, 2021, 33, e2104615.	11.1	15
108	Tuning the AIE Activities and Emission Wavelengths of Tetraphenylethene-Containing Luminogens. ChemistrySelect, 2016, 1, 812-818.	0.7	14

#	Article	IF	CITATIONS
109	Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation. ACS Applied Bio Materials, 2021, 4, 5231-5239.	2.3	14
110	Solid-State Nanochannel with Multiple Signal Outputs for Furin Detection Based on the Biocompatible Condensation Reaction. Analytical Chemistry, 2021, 93, 14036-14041.	3.2	13
111	AlEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chemistry - an Asian Journal, 2019, 14, 689-699.	1.7	12
112	Peptide-based nanomaterials for gene therapy. Nanoscale Advances, 2021, 3, 302-310.	2.2	12
113	Peptide-Conjugated Aggregation-Induced Emission Fluorogen: Precise and Firm Cell Membrane Labeling by Multiple Weak Interactions. CCS Chemistry, 2022, 4, 464-475.	4.6	12
114	Stereochemistry-Guided DNA Probe for Single Nucleotide Polymorphisms Analysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15911-15916.	4.0	11
115	Multifunctional aggregates for precise cellular analysis. Science China Chemistry, 2021, 64, 1938-1945.	4.2	11
116	Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Materials Today Bio, 2022, 15, 100279.	2.6	11
117	Rational Fabrication and Biomedical Application of Biomoleculeâ€Conjugated AlEgens through Click Reaction. Chinese Journal of Chemistry, 2019, 37, 1072-1082.	2.6	10
118	Tumorâ€Triggered Disassembly of a Multipleâ€Agentâ€Therapy Probe for Efficient Cellular Internalization. Angewandte Chemie, 2020, 132, 20585-20590.	1.6	10
119	Precisely Detecting the Telomerase Activities by an AlEgen Probe with Dual Signal Outputs after Cell-Cycle Synchronization. Analytical Chemistry, 2022, 94, 4874-4880.	3.2	9
120	Detection of UVA/UVC-induced damage of p53 fragment by rolling circle amplification with AIEgens. Analyst, The, 2016, 141, 4394-4399.	1.7	7
121	Integration of Dual Targeting and Dual Therapeutic Modules Endows Self-Assembled Nanoparticles with Anti-Tumor Growth and Metastasis Functions. International Journal of Nanomedicine, 2021, Volume 16, 1361-1376.	3.3	7
122	Organic AIE Dots: Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging (Small) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
123	Modular DNA-Incorporated Aggregation-Induced Emission Probe for Sensitive Detection and Imaging of DNA Methyltransferase. ACS Applied Bio Materials, 2020, 3, 9002-9011.	2.3	6
124	Temperature-triggered switchable superwettability on a robust paint for controllable photocatalysis. Cell Reports Physical Science, 2021, 2, 100669.	2.8	6
125	Endocytosis Pathway Self-Regulation for Precise Image-Guided Therapy through an Enzyme-Responsive Modular Peptide Probe. Analytical Chemistry, 2022, 94, 7960-7969.	3.2	6
126	Recent advances in optical-based and force-based single nucleic acid imaging. Science China Chemistry, 2017, 60, 1267-1276.	4.2	5

#	Article	IF	CITATIONS
127	Precise measurement of single molecule and single cell based on nanopores/nanochannels' charge transfer. Science Bulletin, 2021, 66, 1599-1599.	4.3	4
128	Target-triggering, signal-amplified chemo/bio-sensors based on aggregation-induced emission luminogens. Cell Reports Physical Science, 2022, 3, 100743.	2.8	4
129	Carbonate-lon-Mediated Photogenerated Hole Transfer to Boost Hydrogen Production. Journal of Physical Chemistry C, 2022, 126, 10367-10377.	1.5	4
130	Recent Development of DNA-modified AlEgen Probes for Biomedical Application. Chemical Research in Chinese Universities, 2021, 37, 66-72.	1.3	3
131	Lubricantâ€Infused Surfaces: External Stimuli Responsive Liquidâ€Infused Surfaces Switching between Slippery and Nonslippery States: Fabrications and Applications (Adv. Funct. Mater. 10/2020). Advanced Functional Materials, 2020, 30, 2070061.	7.8	2
132	Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angewandte Chemie, 2021, 133, 18428-18436.	1.6	2
133	Modularâ€Peptidesâ€Based Ternary Complex for Precisely Tracking the Targeted Process and Delivery of Gene/Chemoâ€Drug. Advanced Optical Materials, 2021, 9, 2100966.	3.6	2
134	AlEgens assisted label free DNA supersandwich immunoassay for ultrasensitive \hat{l} ±-fetoprotein detection. Giant, 2022, 11, 100110.	2.5	2
135	Correction: A photostable AIE fluorogen for lysosome-targetable imaging of living cells. Journal of Materials Chemistry B, 2016, 4, 7168-7168.	2.9	1
136	Sandwich Assays Based on SPR, SERS, GMR, QCM, Microcantilever, SAW, and RRS Techniques for Protein Detection., 2018,, 69-91.		1
137	Solidâ€State Nanochannels: Enzyme and AlEgens Modulated Solidâ€State Nanochannels: In Situ and Noninvasive Monitoring of H ₂ O ₂ Released from Living Cells (Small Methods) Tj ETQq1	1 40 <i>6</i> 78431	l 41rgBT /Ove
138	Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow. Chemical Research in Chinese Universities, 2022, 38, 957-960.	1.3	1
139	Deep Downregulation of PDâ€L1 by Caged Peptideâ€Conjugated AlEgen/miRâ€140 Nanoparticles for Enhanced Immunotherapy. Angewandte Chemie, 0, , .	1.6	1
140	Colorimetric Sandwich Assays for Protein Detection. , 2018, , 15-27.		0
141	Tumor triggered disassembly: Precise release and efficient cellular internalization of multiple-agent-therapy probe. Chinese Science Bulletin, 2020, 65, 3497-3499.	0.4	0