Sjoerd H Van Der Burg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533069/publications.pdf

Version: 2024-02-01

292 papers

23,732 citations

7069 78 h-index 9839 141 g-index

301 all docs

301 docs citations

times ranked

301

24212 citing authors

#	Article	IF	Citations
1	Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia. New England Journal of Medicine, 2009, 361, 1838-1847.	13.9	970
2	Therapeutic cancer vaccines. Journal of Clinical Investigation, 2015, 125, 3401-3412.	3.9	640
3	Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565, 240-245.	13.7	637
4	Therapeutic cancer vaccines. Nature Reviews Cancer, 2021, 21, 360-378.	12.8	630
5	High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nature Medicine, 2015, 21, 81-85.	15.2	594
6	Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews Cancer, 2016, 16, 219-233.	12.8	580
7	A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 2013, 498, 109-112.	13.7	517
8	Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nature Reviews Cancer, 2008, 8, 351-360.	12.8	508
9	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
10	Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature, 2016, 536, 91-95.	13.7	387
11	Established Human Papillomavirus Type 16-Expressing Tumors Are Effectively Eradicated Following Vaccination with Long Peptides. Journal of Immunology, 2002, 169, 350-358.	0.4	386
12	Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine, 2011, 9, 216.	1.8	370
13	High Number of Intraepithelial CD8+ Tumor-Infiltrating Lymphocytes Is Associated with the Absence of Lymph Node Metastases in Patients with Large Early-Stage Cervical Cancer. Cancer Research, 2007, 67, 354-361.	0.4	369
14	Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine. Clinical Cancer Research, 2008, 14, 178-187.	3.2	346
15	Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human Papillomavirus 16–Related Cancer. JAMA Oncology, 2019, 5, 67.	3.4	344
16	M2 Macrophages Induced by Prostaglandin E2 and IL-6 from Cervical Carcinoma Are Switched to Activated M1 Macrophages by CD4+ Th1 Cells. Journal of Immunology, 2011, 187, 1157-1165.	0.4	334
17	Anti–CTLA-4 therapy broadens the melanoma-reactive CD8 ⁺ T cell response. Science Translational Medicine, 2014, 6, 254ra128.	5.8	325
18	Phase I Immunotherapeutic Trial with Long Peptides Spanning the E6 and E7 Sequences of High-Risk Human Papillomavirus 16 in End-Stage Cervical Cancer Patients Shows Low Toxicity and Robust Immunogenicity. Clinical Cancer Research, 2008, 14, 169-177.	3.2	286

#	Article	IF	Citations
19	Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment. Cancer Research, 2013, 73, 2480-2492.	0.4	285
20	Human Papillomavirus Type 16-Positive Cervical Cancer Is Associated with Impaired CD4+ T-Cell Immunity against Early Antigens E2 and E6. Cancer Research, 2004, 64, 5449-5455.	0.4	277
21	In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. European Journal of Immunology, 1993, 23, 2072-2077.	1.6	246
22	NKG2A Blockade Potentiates CD8ÂT Cell Immunity Induced by Cancer Vaccines. Cell, 2018, 175, 1744-1755.e15.	13.5	241
23	CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials, 2015, 40, 88-97.	5.7	235
24	Tumor-Expressed B7-H1 and B7-DC in Relation to PD-1+ T-Cell Infiltration and Survival of Patients with Cervical Carcinoma. Clinical Cancer Research, 2009, 15, 6341-6347.	3.2	230
25	CD8+ CTL Priming by Exact Peptide Epitopes in Incomplete Freund's Adjuvant Induces a Vanishing CTL Response, whereas Long Peptides Induce Sustained CTL Reactivity. Journal of Immunology, 2007, 179, 5033-5040.	0.4	221
26	Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11895-11899.	3.3	215
27	Human Leukocyte Antigen Class I, MHC Class I Chain-Related Molecule A, and CD8+/Regulatory T-Cell Ratio: Which Variable Determines Survival of Cervical Cancer Patients?. Clinical Cancer Research, 2008, 14, 2028-2035.	3.2	210
28	Association of cervical cancer with the presence of CD4 ⁺ regulatory T cells specific for human papillomavirus antigens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12087-12092.	3.3	201
29	Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. European Journal of Immunology, 1993, 23, 1215-1219.	1.6	185
30	Monalizumab: inhibiting the novel immune checkpoint NKG2A. , 2019, 7, 263.		182
31	HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8 ⁺ T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10656-10661.	3.3	175
32	Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunology, Immunotherapy, 2016, 65, 161-169.	2.0	175
33	Superior induction of antiâ€ŧumor CTL immunity by extended peptide vaccines involves prolonged, DCâ€focused antigen presentation. European Journal of Immunology, 2008, 38, 1033-1042.	1.6	171
34	Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Research, 2003, 63, 636-41.	0.4	166
35	HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. Journal of Translational Medicine, 2013, 11, 88.	1.8	165
36	Human Papillomavirus (HPV) Upregulates the Cellular Deubiquitinase UCHL1 to Suppress the Keratinocyte's Innate Immune Response. PLoS Pathogens, 2013, 9, e1003384.	2.1	164

#	Article	IF	Citations
37	Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Science Translational Medicine, 2016, 8, 334ra52.	5.8	164
38	Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunology, Immunotherapy, 2015, 64, 1271-1286.	2.0	161
39	Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-like Receptor Ligand-Peptide Conjugates in Dendritic Cells. Journal of Biological Chemistry, 2007, 282, 21145-21159.	1.6	157
40	Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and Tâ \in cell activation. European Journal of Immunology, 2013, 43, 2554-2565.	1.6	157
41	Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumors. European Journal of Immunology, 1995, 25, 2638-2642.	1.6	153
42	Prognostic Value of Tumor-Infiltrating Dendritic Cells in Colorectal Cancer: Role of Maturation Status and Intratumoral Localization. Clinical Cancer Research, 2005, 11, 2576-2582.	3.2	149
43	Induction of p53-Specific Immunity by a p53 Synthetic Long Peptide Vaccine in Patients Treated for Metastatic Colorectal Cancer. Clinical Cancer Research, 2009, 15, 1086-1095.	3.2	149
44	Human Papillomavirus Deregulates the Response of a Cellular Network Comprising of Chemotactic and Proinflammatory Genes. PLoS ONE, 2011, 6, e17848.	1.1	145
45	Molecular Mimicry of Human Cytochrome P450 by Hepatitis C Virus at the Level of Cytotoxic T Cell Recognition. Journal of Experimental Medicine, 1999, 190, 169-176.	4.2	144
46	Therapy of Human Papillomavirus-Related Disease. Vaccine, 2012, 30, F71-F82.	1.7	144
47	Defining the critical hurdles in cancer immunotherapy. Journal of Translational Medicine, 2011, 9, 214.	1.8	139
48	Strategies for immunotherapy of cancer. Advances in Immunology, 2000, 75, 235-282.	1.1	138
49	Spontaneous tumor rejection by cbl-b–deficient CD8+ T cells. Journal of Experimental Medicine, 2007, 204, 879-891.	4.2	133
50	Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions: Lesion Clearance Is Related to the Strength of the T-Cell Response. Clinical Cancer Research, 2016, 22, 2342-2350.	3.2	132
51	Design and development of synthetic peptide vaccines: past, present and future. Expert Review of Vaccines, 2007, 6, 591-603.	2.0	130
52	Natural T-helper immunity against human papillomavirus type 16 (hpv16) e7-derived peptide epitopes in patients with hpv16-positive cervical lesions: Identification of 3 human leukocyte antigen class ii-restricted epitopes. International Journal of Cancer, 2001, 91, 612-618.	2.3	129
53	Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clinical Cancer Research, 2003, 9, 5205-13.	3.2	129
54	Intratumoral HPV16-Specific T Cells Constitute a Type l–Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oropharyngeal Cancer. Clinical Cancer Research, 2018, 24, 634-647.	3.2	128

#	Article	IF	Citations
55	Immunological Responses in Women with Human Papillomavirus Type 16 (HPV-16)-Associated Anogenital Intraepithelial Neoplasia Induced by Heterologous Prime-Boost HPV-16 Oncogene Vaccination. Clinical Cancer Research, 2004, 10, 2954-2961.	3.2	125
56	Immunization with a P53 synthetic long peptide vaccine induces P53â€specific immune responses in ovarian cancer patients, a phase II trial. International Journal of Cancer, 2009, 125, 2104-2113.	2.3	123
57	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	2.1	119
58	Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Research, 2002, 62, 472-9.	0.4	119
59	Different Subsets of Tumor-Infiltrating Lymphocytes Correlate with Macrophage Influx and Monosomy 3 in Uveal Melanoma., 2012, 53, 5370.		114
60	Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clinical Cancer Research, 2011, 17, 3064-3076.	3.2	108
61	Tumor Eradication by Cisplatin Is Sustained by CD80/86-Mediated Costimulation of CD8+ T Cells. Cancer Research, 2016, 76, 6017-6029.	0.4	108
62	Expression of three extracellular matrix degradative enzymes in bladder cancer. International Journal of Cancer, 2001, 95, 295-301.	2.3	106
63	Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Advanced Drug Delivery Reviews, 2006, 58, 916-930.	6.6	102
64	The NKG2A–HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clinical Cancer Research, 2020, 26, 5549-5556.	3.2	101
65	Therapeutic vaccination against human papilloma virus induced malignancies. Current Opinion in Immunology, 2011, 23, 252-257.	2.4	99
66	Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunological Reviews, 2002, 188, 177-182.	2.8	94
67	A prospective study on the natural course of lowâ€grade squamous intraepithelial lesions and the presence of HPV16 E2â€, E6―and E7â€specific Tâ€cell responses. International Journal of Cancer, 2010, 126, 133-141.	2.3	92
68	Antiâ€inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitorâ€treated gastrointestinal stromal tumors. International Journal of Cancer, 2010, 127, 899-909.	2.3	92
69	Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunology, Immunotherapy, 2017, 66, 903-912.	2.0	92
70	Design and evaluation of antigen-specific vaccination strategies against cancer. Current Opinion in Immunology, 2000, 12, 576-582.	2.4	91
71	Activation of Tumor-Promoting Type 2 Macrophages by EGFR-Targeting Antibody Cetuximab. Clinical Cancer Research, 2011, 17, 5668-5673.	3.2	91
72	Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Frontiers in Immunology, 2018, 9, 276.	2.2	91

#	Article	IF	Citations
73	The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. Journal of Experimental Medicine, 2010, 207, 207-221.	4.2	89
74	Harmonization of Immune Biomarker Assays for Clinical Studies. Science Translational Medicine, 2011, 3, 108ps44.	5.8	87
7 5	Peptide-pulsed dendritic cells induce tumoricidal cytotoxic T lymphocytes from healthy donors against stably HLA-A*0201-binding peptides from the Melan-A/MART-1 self antigen. European Journal of Immunology, 1996, 26, 1683-1689.	1.6	85
76	Identification of three nonâ€VNTR MUC1â€derived HLAâ€A*0201â€restricted Tâ€cell epitopes that induce protective antiâ€tumor immunity in HLAâ€A2/Kbâ€transgenic mice. International Journal of Cancer, 2001, 91, 385-392.	2.3	85
77	A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunology, Immunotherapy, 2012, 61, 1485-1492.	2.0	85
78	Alternative peptide repertoire of HLA-E reveals a binding motif that is strikingly similar to HLA-A2. Molecular Immunology, 2013, 53, 126-131.	1.0	85
79	CD39 Identifies the CD4+ Tumor-Specific T-cell Population in Human Cancer. Cancer Immunology Research, 2020, 8, 1311-1321.	1.6	84
80	Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Science Translational Medicine, 2020, 12, .	5.8	83
81	Genetic variation of antigen processing machinery components and association with cervical carcinoma. Genes Chromosomes and Cancer, 2007, 46, 577-586.	1.5	82
82	Potentiation of a p53â€SLP vaccine by cyclophosphamide in ovarian cancer: A singleâ€arm phase II study. International Journal of Cancer, 2012, 131, E670-80.	2.3	81
83	Vaccine-Induced Tumor Necrosis Factor–Producing T Cells Synergize with Cisplatin to Promote Tumor Cell Death. Clinical Cancer Research, 2015, 21, 781-794.	3.2	81
84	p53, a potential target for tumor-directed T cells. Immunology Letters, 1994, 40, 171-178.	1.1	80
85	Detection of Human Papillomavirus (HPV) 16-Specific CD4+ T-cell Immunity in Patients with Persistent HPV16-Induced Vulvar Intraepithelial Neoplasia in Relation to Clinical Impact of Imiquimod Treatment. Clinical Cancer Research, 2005, 11, 5273-5280.	3.2	80
86	A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17+ cell frequency. Cancer Immunology, Immunotherapy, 2016, 65, 393-403.	2.0	77
87	Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope., 1997, 70, 302-309.		76
88	Vaccination for Treatment and Prevention of Cancer in Animal Models. Advances in Immunology, 2006, 90, 175-213.	1.1	75
89	Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLAâ€ĐQ and –DP as a restriction element. International Journal of Cancer, 2008, 122, 486-494.	2.3	74
90	The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma. Oncotarget, 2016, 7, 3477-3488.	0.8	73

#	Article	IF	CITATIONS
91	An Unexpectedly Large Polyclonal Repertoire of HPV-Specific T Cells Is Poised for Action in Patients with Cervical Cancer. Cancer Research, 2010, 70, 2707-2717.	0.4	71
92	Tumor mutational load, CD8+ T cells, expression of PD-L1 and HLA class I to guide immunotherapy decisions in NSCLC patients. Cancer Immunology, Immunotherapy, 2020, 69, 771-777.	2.0	70
93	Tumor-specific regulatory T cells in cancer patients. Human Immunology, 2008, 69, 241-249.	1.2	69
94	Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunology, Immunotherapy, 2011, 60, 953-963.	2.0	69
95	Hierarchical Modeling for Rare Event Detection and Cell Subset Alignment across Flow Cytometry Samples. PLoS Computational Biology, 2013, 9, e1003130.	1.5	69
96	Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunology Research, 2015, 3, 1042-1051.	1.6	68
97	Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clinical Cancer Research, 2002, 8, 1019-27.	3. 2	68
98	Vulvar cancer subclassification by HPV and p53 status results in three clinically distinct subtypes. Gynecologic Oncology, 2020, 159, 649-656.	0.6	67
99	Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. , 2019, 7, 10.		66
100	Detection and Functional Analysis of CD8+ T Cells Specific for PRAME: a Target for T-Cell Therapy. Clinical Cancer Research, 2006, 12, 3130-3136.	3.2	64
101	The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFÎ $^\circ$ B activation. Nature Communications, 2015, 6, 6537.	5 . 8	64
102	Identification of non-mutated neoantigens presented by TAP-deficient tumors. Journal of Experimental Medicine, 2018, 215, 2325-2337.	4.2	64
103	Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget, 2020, 11, 2092-2105.	0.8	64
104	The Need for Improvement of the Treatment of Advanced and Metastatic Cervical Cancer, the Rationale for Combined Chemo-Immunotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 190-203.	0.9	64
105	Competition-based cellular peptide binding assays for 13 prevalent HLA class I alleles using fluorescein-labeled synthetic peptides. Human Immunology, 2003, 64, 245-255.	1.2	62
106	TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. Journal of Clinical Investigation, 2016, 126, 784-794.	3.9	60
107	Detection of human papillomavirus type $18E6$ and $E7$ -specific CD4+ T-helper 1 immunity in relation to health versus disease. International Journal of Cancer, 2006, $118,950-956$.	2.3	59
108	Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells. Molecular Immunology, 2009, 46, 1084-1091.	1.0	58

#	Article	lF	CITATIONS
109	Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers, 2019, 11, 845.	1.7	58
110	A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget, 2015, 6, 32228-32243.	0.8	58
111	Balancing between Antitumor Efficacy and Autoimmune Pathology in T-Cell–Mediated Targeting of Carcinoembryonic Antigen. Cancer Research, 2008, 68, 8446-8455.	0.4	57
112	Metabolic stress in cancer cells induces immune escape through a PI3K-dependent blockade of IFN \hat{I}^3 receptor signaling. , 2019, 7, 152.		57
113	Human immunodeficiency virus and human papilloma virus - why HPV-induced lesions do not spontaneously resolve and why therapeutic vaccination can be successful. Journal of Translational Medicine, 2009, 7, 108.	1.8	56
114	The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunology, Immunotherapy, 2014, 63, 147-160.	2.0	55
115	Immunotherapeutic Potential of TGF- \hat{l}^2 Inhibition and Oncolytic Viruses. Trends in Immunology, 2020, 41, 406-420.	2.9	55
116	Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2046-2051.	3.3	54
117	Interleukin-6/interleukin-6 Receptor Pathway as a New Therapy Target in Epithelial Ovarian Cancer. Current Pharmaceutical Design, 2012, 18, 3816-3827.	0.9	54
118	Correlates of immune and clinical activity of novel cancer vaccines. Seminars in Immunology, 2018, 39, 119-136.	2.7	54
119	Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. European Journal of Immunology, 2001, 31, 146-155.	1.6	53
120	Genomeâ€wide promoter methylation analysis identifies epigenetic silencing of <scp><i>MAPK</i></scp> <i>13</i> in primary cutaneous melanoma. Pigment Cell and Melanoma Research, 2013, 26, 542-554.	1.5	52
121	Inhibition of CSF-1R Supports T-Cell Mediated Melanoma Therapy. PLoS ONE, 2014, 9, e104230.	1.1	52
122	Identification, Isolation, and Culture of HLA-A2-Specific B Lymphocytes Using MHC Class I Tetramers. Journal of Immunology, 2003, 171, 6599-6603.	0.4	50
123	Self-Tolerance Does Not Restrict the CD4+ T-Helper Response against the p53 Tumor Antigen. Cancer Research, 2008, 68, 893-900.	0.4	50
124	Addition of interferonâ€Î± to the p53â€SLP® vaccine results in increased production of interferonâ€Î³ in vaccinated colorectal cancer patients: A phase I/II clinical trial. International Journal of Cancer, 2013, 132, 1581-1591.	2.3	50
125	Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specificMAGE-2 gene product. , 1997, 73, 125-130.		49
126	Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients. Cancer Gene Therapy, 2003, 10, 509-517.	2.2	49

#	Article	IF	CITATIONS
127	Longâ€term clinical and immunological effects of p53â€\$LP® vaccine in patients with ovarian cancer. International Journal of Cancer, 2012, 130, 105-112.	2.3	49
128	Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine and Growth Factor Reviews, 2017, 36, 5-15.	3.2	48
129	Peptide Vaccination after T-Cell Transfer Causes Massive Clonal Expansion, Tumor Eradication, and Manageable Cytokine Storm. Cancer Research, 2010, 70, 8339-8346.	0.4	47
130	Harmonization of the intracellular cytokine staining assay. Cancer Immunology, Immunotherapy, 2012, 61, 967-978.	2.0	47
131	Characterization of Cytotoxic T Lymphocyte Epitopes of a Self-Protein, p53, and a Non-Self-Protein, Influenza Matrix. Journal of Immunotherapy, 1993, 14, 121-126.	1.2	46
132	Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. Vaccine, 2007, 25, 1379-1389.	1.7	46
133	Immunotherapy for persistent viral infections and associated disease. Trends in Immunology, 2011, 32, 97-103.	2.9	46
134	Clinical Characteristics Associated With Development of Recurrence and Progression in Usual-Type Vulvar Intraepithelial Neoplasia. International Journal of Gynecological Cancer, 2013, 23, 1476-1483.	1.2	46
135	High-Risk Human Papillomavirus Targets Crossroads in Immune Signaling. Viruses, 2015, 7, 2485-2506.	1.5	46
136	Heterogeneity revealed by integrated genomic analysis uncovers a molecular switch in malignant uveal melanoma. Oncotarget, 2015, 6, 37824-37835.	0.8	46
137	p53: A Potential Target Antigen for Immunotherapy of Cancer. Annals of the New York Academy of Sciences, 2000, 910, 223-236.	1.8	45
138	Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular and Cellular Proteomics, 2019, 18, 1255-1268.	2.5	45
139	The Anatomical Location Shapes the Immune Infiltrate in Tumors of Same Etiology and Affects Survival. Clinical Cancer Research, 2019, 25, 240-252.	3.2	45
140	Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy. Oncotarget, 2017, 8, 58021-58036.	0.8	45
141	The detection of circulating human papillomavirusâ€specific T cells is associated with improved survival of patients with deeply infiltrating tumors. International Journal of Cancer, 2011, 128, 379-389.	2.3	44
142	Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Seminars in Immunology, 2013, 25, 182-190.	2.7	44
143	Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Medicine, 2019, $11,87$.	3.6	44
144	Identification of Potential HLA-A *0201 Restricted CTL Epitopes Derived from the Epithelial Cell Adhesion Molecule (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology, 1997, 53, 81-89.	1.2	43

#	Article	IF	CITATIONS
145	TLR2 ligand-synthetic long peptide conjugates effectively stimulate tumor-draining lymph node T cells of cervical cancer patients. Oncotarget, 2016, 7, 67087-67100.	0.8	43
146	Targeting of the Cancer-Associated Fibroblast—T-Cell Axis in Solid Malignancies. Journal of Clinical Medicine, 2019, 8, 1989.	1.0	42
147	Distinct regulation and impact of type 1 T-cell immunity against HPV16 L1, E2 and E6 antigens during HPV16-induced cervical infection and neoplasia. International Journal of Cancer, 2006, 118, 675-683.	2.3	41
148	Cooperative induction of apoptosis in <scp>NRAS</scp> mutant melanoma by inhibition of <scp>MEK</scp> and <scp>ROCK</scp> . Pigment Cell and Melanoma Research, 2015, 28, 307-317.	1.5	41
149	Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular and Cellular Proteomics, 2018, 17, 2132-2145.	2.5	41
150	Future Challenges in Cancer Resistance to Immunotherapy. Cancers, 2020, 12, 935.	1.7	41
151	Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy., 2020, 8, e001191.		40
152	Surgery followed by Persistence of High-Grade Squamous Intraepithelial Lesions Is Associated with the Induction of a Dysfunctional HPV16-Specific T-Cell Response. Clinical Cancer Research, 2008, 14, 7188-7195.	3.2	39
153	Digital PCR-Based T-cell Quantification–Assisted Deconvolution of the Microenvironment Reveals that Activated Macrophages Drive Tumor Inflammation in Uveal Melanoma. Molecular Cancer Research, 2018, 16, 1902-1911.	1.5	39
154	Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPVâ€induced vulvar neoplasia. International Journal of Cancer, 2015, 136, E85-94.	2.3	37
155	CD4+ T Cell and NK Cell Interplay Key to Regression of MHC Class Ilow Tumors upon TLR7/8 Agonist Therapy. Cancer Immunology Research, 2017, 5, 642-653.	1.6	37
156	Induction of a primary human cytotoxic T-lymphocyte response against a novel conserved epitope in a functional sequence of HIV-1 reverse transcriptase. Aids, 1995, 9, 121-128.	1.0	36
157	Skin reactions to human papillomavirus (HPV) 16 specific antigens intradermally injected in healthy subjects and patients with cervical neoplasia. International Journal of Cancer, 2008, 123, 146-152.	2.3	36
158	Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model., 2020, 8, e000772.		36
159	New Role of Signal Peptide Peptidase To Liberate C-Terminal Peptides for MHC Class I Presentation. Journal of Immunology, 2013, 191, 4020-4028.	0.4	35
160	P53-specific T cell responses in patients with malignant and benign ovarian tumors: Implications for p53 based immunotherapy. International Journal of Cancer, 2007, 121, 606-614.	2.3	34
161	Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Review of Vaccines, 2008, 7, 1-5.	2.0	34
162	CD8+ T Cell Responses against TAP-Inhibited Cells Are Readily Detected in the Human Population. Journal of Immunology, 2010, 185, 6508-6517.	0.4	34

#	Article	IF	CITATIONS
163	Intradermal Delivery of TLR Agonists in a Human Explant Skin Model: Preferential Activation of Migratory Dendritic Cells by Polyribosinic-Polyribocytidylic Acid and Peptidoglycans. Journal of Immunology, 2013, 190, 3338-3345.	0.4	34
164	Loss of BAP1 Is Associated with Upregulation of the NFkB Pathway and Increased HLA Class I Expression in Uveal Melanoma. Cancers, 2019, 11, 1102.	1.7	34
165	Peptide transporter TAP mediates between competing antigen sources generating distinct surface MHC class I peptide repertoires. European Journal of Immunology, 2011, 41, 3114-3124.	1.6	33
166	Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8+ T cells with detection by ELISPOT and HLA-multimer staining. Cancer Immunology, Immunotherapy, 2014, 63, 1199-1211.	2.0	30
167	Cytotoxic T lymphocytes in HIV-1 infection: a killing paradox?. Trends in Immunology, 1998, 19, 317-324.	7.5	29
168	Prediction of the immunogenic potential of frameshiftâ€mutated antigens in microsatellite instable cancer. International Journal of Cancer, 2008, 123, 838-845.	2.3	29
169	De-Risking Immunotherapy: Report of a Consensus Workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunology Research, 2016, 4, 279-288.	1.6	29
170	The status of HPV16-specific T-cell reactivity in health and disease as a guide to HPV vaccine development. Virus Research, 2002, 89, 275-284.	1.1	28
171	Magnitude and polarization of P53-specific T-helper immunity in connection to leukocyte infiltration of colorectal tumors. International Journal of Cancer, 2003, 107, 425-433.	2.3	28
172	Effect of Hypoxic Stress on Migration and Characteristics of Monocytes in Uveal Melanoma. JAMA Ophthalmology, 2014, 132, 614.	1.4	28
173	Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. Journal of Translational Medicine, 2011, 9, 147.	1.8	27
174	Serum-free freezing media support high cell quality and excellent ELISPOT assay performance across a wide variety of different assay protocols. Cancer Immunology, Immunotherapy, 2013, 62, 615-627.	2.0	27
175	Characterization of Antigen-Specific Immune Responses Induced by Canarypox Virus Vaccines. Journal of Immunology, 2007, 179, 6115-6122.	0.4	26
176	Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFN \hat{I}^3 - and TNF \hat{I}^4 -Mediated Antiproliferative Effects and Necroptosis. Frontiers in Immunology, 2016, 7, 496.	2.2	26
177	The importance of correctly timing cancer immunotherapy. Expert Opinion on Biological Therapy, 2017, 17, 87-103.	1.4	26
178	Effect of Productive Human Papillomavirus 16 Infection on Global Gene Expression in Cervical Epithelium. Journal of Virology, 2018, 92, .	1.5	26
179	CD163 $<$ sup $>+sup>cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer. , 2020, 8, e001053.$		26
180	The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. Journal of Experimental Medicine, 2010, 207, 671-671.	4.2	25

#	Article	IF	CITATIONS
181	Tumor-infiltrating Cytotoxic T Lymphocytes as Independent Prognostic Factor in Epithelial Ovarian Cancer With Wilms Tumor Protein 1 Overexpression. Journal of Immunotherapy, 2011, 34, 516-523.	1.2	25
182	Mechanisms of Peptide Vaccination in Mouse Models. Advances in Immunology, 2012, 114, 51-76.	1.1	25
183	The tumor area occupied by Tbet+ cells in deeply invading cervical cancer predicts clinical outcome. Journal of Translational Medicine, 2015, 13, 295.	1.8	25
184	Expression of coinhibitory receptors on T cells in the microenvironment of usual vulvar intraepithelial neoplasia is related to proinflammatory effector T cells and an increased recurrenceâ€free survival. International Journal of Cancer, 2015, 136, E95-106.	2.3	25
185	T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Frontiers in Immunology, 2018, 9, 60.	2.2	25
186	Demarcated thresholds of tumor-specific CD8 T cells elicited by MCMV-based vaccine vectors provide robust correlates of protection., 2019, 7, 25.		25
187	CD47/SIRPα axis: bridging innate and adaptive immunity. , 2022, 10, e004589.		25
188	Effective Cooperation of Monoclonal Antibody and Peptide Vaccine for the Treatment of Mouse Melanoma. Journal of Immunology, 2013, 190, 489-496.	0.4	24
189	Colorectal cancer vaccines in clinical trials. Expert Review of Vaccines, 2011, 10, 899-921.	2.0	23
190	The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools. Cancer Immunology, Immunotherapy, 2012, 61, 1953-1963.	2.0	23
191	Long-term Survival and Clinical Benefit from Adoptive T-cell Transfer in Stage IV Melanoma Patients Is Determined by a Four-Parameter Tumor Immune Signature. Cancer Immunology Research, 2017, 5, 170-179.	1.6	23
192	Pre-existing inflammatory immune microenvironment predicts the clinical response of vulvar high-grade squamous intraepithelial lesions to therapeutic HPV16 vaccination., 2020, 8, e000563.		23
193	Rapid enrichment of human papillomavirus (HPV)â€specific polyclonal T cell populations for adoptive immunotherapy of cervical cancer. International Journal of Cancer, 2005, 114, 274-282.	2.3	22
194	2-Azidoalkoxy-7-hydro-8-oxoadenine derivatives as TLR7 agonists inducing dendritic cell maturation. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2249-2251.	1.0	22
195	Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunology, Immunotherapy, 2013, 62, 1161-1173.	2.0	22
196	Human papillomavirus 16 E2-, E6- and E7-specific T-cell responses in children and their mothers who developed incident cervical intraepithelial neoplasia during a 14-year follow-up of the Finnish Family HPV cohort. Journal of Translational Medicine, 2014, 12, 44.	1.8	22
197	Standard radiotherapy but not chemotherapy impairs systemic immunity in non-small cell lung cancer. Oncolmmunology, 2016, 5, e1255393.	2.1	22
198	EGFR signaling suppresses type 1 cytokine-induced T-cell attracting chemokine secretion in head and neck cancer. PLoS ONE, 2018, 13, e0203402.	1.1	22

#	Article	lF	Citations
199	High numbers of activated helper T cells are associated with better clinical outcome in early stage vulvar cancer, irrespective of HPV or p53 status., 2019, 7 , 236.		22
200	<scp>NKG2A</scp> is a late immune checkpoint on <scp>CD8</scp> T cells and marks repeated stimulation and cell division. International Journal of Cancer, 2022, 150, 688-704.	2.3	22
201	The Use of Epstein-Barr Virus-Transformed B Lymphocyte Cell Lines in a Peptide-Reconstitution Assay. Journal of Immunotherapy, 1995, 18, 77-85.	1.2	21
202	Potential use of lymph node-derived HPV-specific T cells for adoptive cell therapy of cervical cancer. Cancer Immunology, Immunotherapy, 2016, 65, 1451-1463.	2.0	21
203	IDO and galectin-3 hamper the ex vivo generation of clinical grade tumor-specific T cells for adoptive cell therapy in metastatic melanoma. Cancer Immunology, Immunotherapy, 2017, 66, 913-926.	2.0	21
204	Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 37-48.	1.1	19
205	Control of immune escaped human papilloma virus is regained after therapeutic vaccination. Current Opinion in Virology, 2017, 23, 16-22.	2.6	19
206	The immune microenvironment in vulvar (pre)cancer: review of literature and implications for immunotherapy. Expert Opinion on Biological Therapy, 2018, 18, 1223-1233.	1.4	19
207	Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters. Cancer Immunology, Immunotherapy, 2015, 64, 585-598.	2.0	18
208	T cells specific for a TAP-independent self-peptide remain na \tilde{A} -ve in tumor-bearing mice and are fully exploitable for therapy. Oncolmmunology, 2018, 7, e1382793.	2.1	18
209	T-regulatory cells in tumour-specific vaccination strategies. Expert Opinion on Biological Therapy, 2008, 8, 1365-1379.	1.4	17
210	Human papillomavirus 16-specific cell-mediated immunity in children born to mothers with incident cervical intraepithelial neoplasia (CIN) and to those constantly HPV negative. Journal of Translational Medicine, 2015, 13, 370.	1.8	17
211	HPV16 E7 DNA tattooing: safety, immunogenicity, and clinical response in patients with HPV-positive vulvar intraepithelial neoplasia. Cancer Immunology, Immunotherapy, 2017, 66, 1163-1173.	2.0	17
212	Low-dose interferon-alpha preconditioning and adoptive cell therapy in patients with metastatic melanoma refractory to standard (immune) therapies: a phase I/II study. , 2020, 8, e000166.		17
213	GAPVAC-101: First-in-human trial of a highly personalized peptide vaccination approach for patients with newly diagnosed glioblastoma Journal of Clinical Oncology, 2018, 36, 2000-2000.	0.8	17
214	Influenza matrix 1â€specific human CD4 ⁺ FOXP3 ⁺ and FOXP3 ^{â^'} regulatory T cells can be detected long after viral clearance. European Journal of Immunology, 2010, 40, 3064-3074.	1.6	16
215	The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study. Cancer Immunology, Immunotherapy, 2013, 62, 489-501.	2.0	16
216	The Breadth of Synthetic Long Peptide Vaccine-Induced CD8+ T Cell Responses Determines the Efficacy against Mouse Cytomegalovirus Infection. PLoS Pathogens, 2016, 12, e1005895.	2.1	16

#	Article	IF	CITATIONS
217	Tissue-Specific Gene Expression during Productive Human Papillomavirus 16 Infection of Cervical, Foreskin, and Tonsil Epithelium. Journal of Virology, 2019, 93, .	1.5	16
218	Lack of myeloid cell infiltration as an acquired resistance strategy to immunotherapy. , 2020, 8, e001326.		16
219	CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. , 2022, 10, e003995.		16
220	Circulating human papillomavirus type 16 specific T-cells are associated with HLA Class I expression on tumor cells, but not related to the amount of viral oncogene transcripts. International Journal of Cancer, 2007, 121, 2711-2715.	2.3	15
221	Nearâ€genomewide <scp>RNA</scp> i screening for regulators of <scp>BRAF^V</scp> 600Eâ€induced senescence identifies <i><scp>RASEF</scp></i> , a gene epigenetically silenced in melanoma. Pigment Cell and Melanoma Research, 2014, 27, 640-652.	1.5	15
222	Monitoring of the Immune Dysfunction in Cancer Patients. Vaccines, 2016, 4, 29.	2.1	15
223	Primary vulvar squamous cell carcinomas with high T cell infiltration and active immune signaling are potential candidates for neoadjuvant PD-1/PD-L1 immunotherapy., 2021, 9, e003671.		15
224	Tumor-specific T cells support chemokine-driven spatial organization of intratumoral immune microaggregates needed for long survival., 2022, 10, e004346.		15
225	Long-term HPV-specific immune response after one versus two and three doses of bivalent HPV vaccination in Dutch girls. Vaccine, 2019, 37, 7280-7288.	1.7	14
226	The Tumor Microenvironment and Immunotherapy of Oropharyngeal Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 545385.	1.3	14
227	Chemically synthesized protein as tumour-specific vaccine: immunogenicity and efficacy of synthetic HPV16 E7 in the TC-1 mouse tumour model. Vaccine, 2004, 23, 305-311.	1.7	13
228	Evaluation of Immunological Crossâ€Reactivity between Clade A9 Highâ€Risk Human Papillomavirus Types on the Basis of E6â€Specific CD4 ⁺ Memory T Cell Responses. Journal of Infectious Diseases, 2010, 202, 1200-1211.	1.9	13
229	Treatment failure in patients with HPV 16-induced vulvar intraepithelial neoplasia: understanding different clinical responses to immunotherapy. Expert Review of Vaccines, 2012, 11, 821-840.	2.0	13
230	CD40-Mediated Amplification of Local Immunity by Epithelial Cells Is Impaired by HPV. Journal of Investigative Dermatology, 2014, 134, 2918-2927.	0.3	13
231	Cell mediated immunity against HPV16 E2, E6 and E7 peptides in women with incident CIN and in constantly HPV-negative women followed-up for 10-years. Journal of Translational Medicine, 2015, 13, 163.	1.8	13
232	The Potential and Challenges of Exploiting the Vast But Dynamic Neoepitope Landscape for Immunotherapy. Frontiers in Immunology, 2017, 8, 1113.	2.2	13
233	Interleukinâ€6â€mediated resistance to immunotherapy is linked to impaired myeloid cell function. International Journal of Cancer, 2021, 148, 211-225.	2.3	13
234	Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S., 2022, 10, e003591.		13

#	Article	IF	CITATIONS
235	Dominant contribution of the proteasome and metalloproteinases to TAP-independent MHC-I peptide repertoire. Molecular Immunology, 2014, 62, 129-136.	1.0	12
236	New approaches in vaccine-based immunotherapy for human papillomavirus-induced cancer. Current Opinion in Immunology, 2015, 35, 9-14.	2.4	12
237	Photochemical Internalization Enhanced Vaccination Is Safe, and Gives Promising Cellular Immune Responses to an HPV Peptide-Based Vaccine in a Phase I Clinical Study in Healthy Volunteers. Frontiers in Immunology, 2020, 11, 576756.	2.2	12
238	Local and systemic XAGE-1b-specific immunity in patients with lung adenocarcinoma. Cancer Immunology, Immunotherapy, 2015, 64, 1109-1121.	2.0	11
239	Enforced OX40 Stimulation Empowers Booster Vaccines to Induce Effective CD4+ and CD8+ T Cell Responses against Mouse Cytomegalovirus Infection. Frontiers in Immunology, 2017, 8, 144.	2.2	11
240	Affinity, specificity and T-cell-receptor diversity of melanoma-specific CTL generated in vitro against a single tyrosinase epitope., 1997, 72, 1122-1128.		10
241	Immune Response Against Frameshift-Induced Neopeptides in HNPCC Patients and Healthy HNPCC Mutation Carriers. Gastroenterology, 2008, 135, 711-712.	0.6	10
242	Epitope Selection for HLA-DQ2 Presentation: Implications for Celiac Disease and Viral Defense. Journal of Immunology, 2019, 202, 2558-2569.	0.4	10
243	A preâ€existing coordinated inflammatory microenvironment is associated with complete response of vulvar highâ€grade squamous intraepithelial lesions to different forms of immunotherapy. International Journal of Cancer, 2020, 147, 2914-2923.	2.3	10
244	IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. , 2021, 9, e002460.		10
245	Predictive Biomarkers for Outcomes of Immune Checkpoint Inhibitors (ICIs) in Melanoma: A Systematic Review. Cancers, 2021, 13, 6366.	1.7	10
246	Managing Multi-center Flow Cytometry Data for Immune Monitoring. Cancer Informatics, 2014, 13s7, CIN.S16346.	0.9	9
247	Generation of TCR-Engineered T Cells and Their Use To Control the Performance of T Cell Assays. Journal of Immunology, 2015, 194, 6177-6189.	0.4	9
248	Differential Expression of CD49a and CD49b Determines Localization and Function of Tumor-Infiltrating CD8+ T Cells. Cancer Immunology Research, 2021, 9, 583-597.	1.6	9
249	A phase I study in patients with a human papillomavirus type 16 positive oropharyngeal tumor treated with second generation synthetic long peptide vaccine conjugated to a defined adjuvant Journal of Clinical Oncology, 2016, 34, TPS3113-TPS3113.	0.8	9
250	TEIPP peptides: exploration of unTAPped cancer antigens. Oncolmmunology, 2019, 8, 1599639.	2.1	8
251	Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity. Cancers, 2022, 14, 1390.	1.7	8
252	Do epitopes derived form autoantigens display low affinity for MHC class I?. Trends in Immunology, 1997, 18, 97-98.	7.5	7

#	Article	IF	Citations
253	Host genetics and tumor environment determine the functional impact of neutrophils in mouse tumor models., 2020, 8, e000877.		7
254	Immunotherapy of Human Papilloma Virus Induced Disease. The Open Virology Journal, 2012, 6, 257-263.	1.8	7
255	PROTECT: Prospective Phase-II-Trial Evaluating Adaptive Proton Therapy for Cervical Cancer to Reduce the Impact on Morbidity and the Immune System. Cancers, 2021, 13, 5179.	1.7	7
256	Tumor-Infiltrating T Cells Can Be ExpandedÂSuccessfully from Primary Uveal Melanoma after Separation from Their TumorÂEnvironment. Ophthalmology Science, 2022, 2, 100132.	1.0	7
257	Association of T cell responses after vaccination with HPV16 long peptides for late stage cervical cancer with prolonged survival Journal of Clinical Oncology, 2017, 35, 5525-5525.	0.8	6
258	A framework for T cell assays. Oncotarget, 2015, 6, 35143-35144.	0.8	6
259	Development of an RNA-based kit for easy generation of TCR-engineered lymphocytes to control T-cell assay performance. Journal of Immunological Methods, 2018, 458, 74-82.	0.6	5
260	Simplified Monopalmitoyl Tollâ€like Receptor 2 Ligand Miniâ€UPam for Selfâ€Adjuvanting Neoantigenâ€Based Synthetic Cancer Vaccines. ChemBioChem, 2021, 22, 1215-1222.	1.3	5
261	Interferonâ€Î³ and IL â€5 associated cellâ€mediated immune responses to HPV16 E2 and E6 distinguish between persistent oral HPV16 infections and noninfected mucosa. Clinical and Experimental Dental Research, 2021, 7, 903-913.	0.8	5
262	Cross-presentation of a TAP-independent signal peptide induces CD8 T immunity to escaped cancers but necessitates anchor replacement. Cancer Immunology, Immunotherapy, $2021, 1.$	2.0	5
263	The role of the reporting framework MIATA within current efforts to advance immune monitoring. Journal of Immunological Methods, 2014, 409, 6-8.	0.6	4
264	Synergy between chemotherapy and cancer vaccination. Aging, 2015, 7, 340-341.	1.4	4
265	Blood-based kinase activity profiling: a potential predictor of response to immune checkpoint inhibition in metastatic cancer., 2020, 8, e001607.		4
266	Correlation between strength of T-cell response against HPV16 and survival after vaccination with HPV16 long peptides in combination with chemotherapy for late-stage cervical cancer Journal of Clinical Oncology, 2017, 35, 140-140.	0.8	4
267	Prediction the clinical outcomes of cancer patients after peptide vaccination Journal of Clinical Oncology, 2019, 37, e14295-e14295.	0.8	4
268	Recent progress in peptide vaccination in cancer with a focus on non-small-cell lung cancer. Expert Review of Vaccines, 2014, 13, 87-116.	2.0	3
269	IL11: A Specific Repressor of Tumor-Specific CD4+ T Cells. Cancer Immunology Research, 2021, 9, 724-724.	1.6	3
270	Chemical synthesis of the HPV16 E7 protein. Tetrahedron Letters, 2006, 47, 9349-9352.	0.7	2

#	Article	IF	CITATIONS
271	Editorial overview: Tumour immunology: What's beyond today's success in tumor immunology. Current Opinion in Immunology, 2016, 39, viii-x.	2.4	2
272	Abstract CT002: A strong HPV-specific T-cell response after chemo-immunotherapy for advanced cervical cancer is associated with prolonged survival. Cancer Research, 2019, 79, CT002-CT002.	0.4	2
273	Mechanism of superior cross-presentation of synthetic long peptides in comparison with protein for therapeutic cancer vaccination. Molecular Immunology, 2012, 51, 25.	1.0	1
274	Tumor-derived GDF-15 to suppress t-lymphocyte recruitment to the tumor microenvironment resulting in resistance to ANTI-PD-1 treatment Journal of Clinical Oncology, 2021, 39, e14532-e14532.	0.8	1
275	Abstract 2654: GAPVAC-101 phase I trial: First data of an innovative actively personalized peptide vaccination trial in patients with newly diagnosed glioblastoma. , 2016, , .		1
276	Abstract 2938: Synergistic effects of properly timed HPV16 synthetic long peptide vaccination during standard carboplatin-paclitaxel chemotherapy in animals and in patients with metastatic cervical carcinoma. , 2014, , .		1
277	Blood-based multiplex kinase activity profiling as a predictive marker for clinical response to checkpoint blockade in advanced melanoma Journal of Clinical Oncology, 2018, 36, 9579-9579.	0.8	1
278	p53-Specific serum antibodies are not associated with a history of skin carcinoma in renal transplant recipients and immunocompetent individuals. Journal of Dermatological Science, 2005, 38, 228-230.	1.0	0
279	ATIM-20. GAPVAC-101 TRIAL OF A HIGHLY PERSONALIZED PEPTIDE VACCINATION FOR PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi5-vi5.	0.6	O
280	Generation of TCR-engineered reference cell samples to control T-cell assay performance. Methods in Enzymology, 2020, 631, 195-221.	0.4	0
281	Abstract 4712: Chemotherapy-enhanced NFkB pathway activation in gynecological cancers increases the differentiation of monocytes to M2 macrophages instead of dendritic cells, 2013, , .		0
282	Abstract 2494: Vaccine-induced TNF alpha producing T cells synergize with cisplatin in tumor eradication. , 2015, , .		0
283	Abstract 5035A: Intratumoral HPV16-specific T-cells determine clinical outcome of HPV16+ oropharyngeal carcinomas. , 2016, , .		O
284	Abstract PR11: Neo-antigen landscape dynamics during human melanoma-T cell interactions. , 2016, , .		0
285	Abstract LB-200: A patient derived antibody targeting the tetraspanin CD9 synergistically inhibits tumor growth with an anti PD1 antibody. , 2017 , , .		O
286	Abstract 2999: NKG2A checkpoint receptor expression on tumor-infiltrating CD8+T cells restrains efficacy of immunotherapy. , 2017, , .		0
287	Effect of targeting CD40 for DC vaccination in pancreatic adenocarcinoma Journal of Clinical Oncology, 2019, 37, e15783-e15783.	0.8	0
288	Abstract 531: AT1412, a patient-derived antibody in development for the treatment of CD9-positive precursor B-acute lymphoblastic leukemia. , 2020, , .		0

#	ARTICLE	IF	CITATIONS
289	Abstract 532: A patient-derived anti-CD9 antibody induces tumor rejection and synergistically enhances anti-PD1 activity. , 2020, , .		O
290	Phase I/II study protocol to assess safety and efficacy of adoptive cell therapy with anti-PD-1 plus low-dose pegylated-interferon-alpha in patients with metastatic melanoma refractory to standard of care treatments: the ACTME trial. BMJ Open, 2020, 10, e044036.	0.8	0
291	721 $\hat{a}\in\dots$ AT1412, a patient-derived CD9 antibody in preclinical development promoting tumor immune infiltration and inducing tumor rejection. , 2020, , .		O
292	590â€Pre-conditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. , 2020, , .		0