Zhimin Qiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5532719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 2004, 38, 2874-2890.	11.3	559
2	Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 2018, 130, 38-46.	11.3	289
3	Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research, 2003, 37, 1308-1319.	11.3	231
4	Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography–mass spectrometry. Journal of Chromatography A, 2008, 1202, 173-180.	3.7	210
5	Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 2011, 84, 695-700.	8.2	203
6	Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere, 2017, 172, 392-398.	8.2	157
7	Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Research, 2006, 40, 2017-2026.	11.3	153
8	Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes. Water Research, 2017, 121, 178-185.	11.3	144
9	Formation of Iodinated Disinfection Byproducts (I-DBPs) in Drinking Water: Emerging Concerns and Current Issues. Accounts of Chemical Research, 2019, 52, 896-905.	15.6	144
10	Determination of Monochloramine Formation Rate Constants with Stopped-Flow Spectrophotometry. Environmental Science & Technology, 2004, 38, 1435-1444.	10.0	143
11	Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study. Journal of Environmental Management, 2016, 178, 11-19.	7.8	140
12	Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. Journal of Environmental Sciences, 2012, 24, 596-601.	6.1	129
13	Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and Î-MnO 2). Water Research, 2017, 112, 1-8.	11.3	123
14	Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent. Water Research, 2009, 43, 4392-4402.	11.3	121
15	Fate and seasonal variation of endocrine-disrupting chemicals in a sewage treatment plant with A/A/O process. Separation and Purification Technology, 2012, 84, 9-15.	7.9	105
16	Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism. Water Research, 2017, 123, 67-74.	11.3	101
17	Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environment International, 2016, 92-93, 317-323.	10.0	99
18	Sulfamethazine degradation in water by the VUV/UV process: Kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system. Water Research, 2017, 108, 348-355.	11.3	98

#	Article	IF	CITATIONS
19	Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water. Journal of Environmental Sciences, 2014, 26, 962-969.	6.1	94
20	Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure. Environmental Sciences: Processes and Impacts, 2015, 17, 1654-1660.	3.5	90
21	Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor. Applied Catalysis B: Environmental, 2016, 187, 83-89.	20.2	89
22	An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics. Journal of Environmental Sciences, 2017, 56, 263-271.	6.1	89
23	Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents. Chemical Engineering Journal, 2017, 316, 288-295.	12.7	85
24	Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy. Water Research, 2018, 129, 428-435.	11.3	85
25	Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 2009, 1216, 7071-7080.	3.7	84
26	ls anammox a promising treatment process for nitrogen removal from nitrogen-rich saline wastewater?. Bioresource Technology, 2018, 270, 722-731.	9.6	84
27	Adsorptive removal of antibiotics from water using magnetic ion exchange resin. Journal of Environmental Sciences, 2017, 52, 111-117.	6.1	82
28	A comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs). Chemosphere, 2013, 92, 986-992.	8.2	81
29	Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere, 2010, 78, 517-526.	8.2	79
30	Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone. Chemosphere, 2018, 206, 184-191.	8.2	79
31	Accelerated oxidation of iopamidol by ozone/peroxymonosulfate (O3/PMS) process: Kinetics, mechanism, and simultaneous reduction of iodinated disinfection by-product formation potential. Water Research, 2020, 173, 115615.	11.3	77
32	VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS). Environmental Science & Technology, 2016, 50, 5849-5856.	10.0	76
33	Promoted discoloration of methyl orange in H2O2/Fe(III) Fenton system: Effects of gallic acid on iron cycling. Separation and Purification Technology, 2016, 171, 144-150.	7.9	72
34	Occurrences of 29 pesticides in the Huangpu River, China: Highest ecological risk identified in Shanghai metropolitan area. Chemosphere, 2020, 251, 126411.	8.2	71
35	UV photolysis kinetics of sulfonamides in aqueous solution based on optimized fluence quantification. Water Research, 2015, 75, 43-50.	11.3	67
36	Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry. Journal of Environmental Sciences, 2014, 26, 1949-1959.	6.1	65

#	Article	IF	CITATIONS
37	The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. Chemosphere, 2020, 250, 126181.	8.2	65
38	Minimizing bromate formation with cerium dioxide during ozonation of bromide-containing water. Water Research, 2008, 42, 3651-3658.	11.3	63
39	MCM-48 modified magnetic mesoporous nanocomposite as an attractive adsorbent for the removal of sulfamethazine from water. Water Research, 2013, 47, 4107-4114.	11.3	62
40	Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China. Chemosphere, 2017, 167, 262-268.	8.2	62
41	Methylene blue degradation by the VUV/UV/persulfate process: Effect of pH on the roles of photolysis and oxidation. Journal of Hazardous Materials, 2020, 391, 121855.	12.4	61
42	Oxidation of sulfonamide antibiotics by chlorine dioxide in water: Kinetics and reaction pathways. Chemical Engineering Journal, 2017, 327, 743-750.	12.7	60
43	Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. Journal of Hazardous Materials, 2021, 404, 124095.	12.4	60
44	Performance and microbial community of simultaneous anammox and denitrification (SAD) process in a sequencing batch reactor. Bioresource Technology, 2016, 218, 1064-1072.	9.6	59
45	Sonohydrothermal synthesis of MFe2O4 magnetic nanoparticles for adsorptive removal of tetracyclines from water. Separation and Purification Technology, 2013, 117, 104-110.	7.9	58
46	Kinetics and mechanism of pyruvic acid degradation by ozone in the presence of PdO/CeO2. Applied Catalysis B: Environmental, 2012, 113-114, 290-295.	20.2	57
47	Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China. Environmental Sciences: Processes and Impacts, 2015, 17, 596-605.	3.5	54
48	Treatment of Antibiotics and Antibiotic Resistant Bacteria in Swine Wastewater with Free Chlorine. Journal of Agricultural and Food Chemistry, 2006, 54, 8144-8154.	5.2	53
49	Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: Impact of sulfamethazine concentration on reaction mechanism. Journal of Hazardous Materials, 2018, 344, 1181-1187.	12.4	53
50	Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	52
51	Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment. Water Research, 2009, 43, 3435-3442.	11.3	51
52	Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways. Journal of Hazardous Materials, 2017, 321, 28-36.	12.4	51
53	Quinone group enhances the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism. Water Research, 2018, 143, 109-116.	11.3	51
54	Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants: Influence of operational parameters and removal pathways. Water Research, 2017, 124, 244-250.	11.3	50

#	Article	IF	CITATIONS
55	Degradation of endocrine-disrupting chemicals during activated sludge reduction by ozone. Chemosphere, 2013, 91, 366-373.	8.2	48
56	Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction. Chemosphere, 2018, 195, 252-259.	8.2	47
57	Occurrence and partition of antibiotics in the liquid and solid phases of swine wastewater from concentrated animal feeding operations in Shandong Province, China. Environmental Sciences: Processes and Impacts, 2013, 15, 870.	3.5	46
58	Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process. Chemical Engineering Journal, 2018, 342, 155-162.	12.7	42
59	Organic Pollutant Degradation in Water by the Vacuum-Ultraviolet/Ultraviolet/H ₂ O ₂ Process: Inhibition and Enhancement Roles of H ₂ O ₂ . Environmental Science & Technology, 2019, 53, 912-918.	10.0	42
60	Oxidation of iopamidol with ferrate (Fe(VI)): Kinetics and formation of toxic iodinated disinfection by-products. Water Research, 2018, 130, 200-207.	11.3	40
61	Formation of haloacetic acids, halonitromethanes, bromate and iodate during chlorination and ozonation of seawater and saltwater of marine aquaria systems. Chemosphere, 2013, 90, 2485-2492.	8.2	39
62	Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater. Journal of Environmental Sciences, 2014, 26, 1623-1629.	6.1	39
63	Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Environmental Sciences, 2011, 23, 1729-1737.	6.1	38
64	Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism. Water Research, 2015, 86, 2-8.	11.3	37
65	Kinetic and mechanistic insights into the abatement of clofibric acid by integrated UV/ozone/peroxydisulfate process: A modeling and theoretical study. Water Research, 2020, 186, 116336.	11.3	37
66	Determination of Ozonation Rate Constants for Lincomycin and Spectinomycin. Ozone: Science and Engineering, 2004, 26, 525-537.	2.5	36
67	Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Fe(III) addition: Nitrogen shock loading and community structure. Bioresource Technology, 2019, 287, 121405.	9.6	36
68	Degradation of iodinated disinfection byproducts by VUV/UV process based on a mini-fluidic VUV/UV photoreaction system. Water Research, 2019, 158, 417-423.	11.3	36
69	In Situ Measurement of UV Fluence Rate Distribution by Use of a Micro Fluorescent Silica Detector. Environmental Science & Technology, 2011, 45, 3034-3039.	10.0	35
70	Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: A pilot-scale study. Chemical Engineering Journal, 2015, 268, 162-169.	12.7	35
71	Trace Organic Pollutant Removal by VUV/UV/chlorine Process: Feasibility Investigation for Drinking Water Treatment on a Mini-Fluidic VUV/UV Photoreaction System and a Pilot Photoreactor. Environmental Science & Technology, 2018, 52, 7426-7433.	10.0	35
72	Effective abatement of 29 pesticides in full-scale advanced treatment processes of drinking water: From concentration to human exposure risk. Journal of Hazardous Materials, 2021, 403, 123986.	12.4	35

#	Article	IF	CITATIONS
73	Kinetics and mechanism of dimethoate chlorination during drinking water treatment. Chemosphere, 2014, 103, 181-187.	8.2	34
74	Enhanced formation of bromate and brominated disinfection byproducts during chlorination of bromide-containing waters under catalysis of copper corrosion products. Water Research, 2016, 98, 302-308.	11.3	34
75	Configuration optimization of UV reactors for water disinfection with computational fluid dynamics: Feasibility of using particle minimum UV dose as a performance indicator. Chemical Engineering Journal, 2016, 306, 1-8.	12.7	34
76	Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays. Applied Catalysis B: Environmental, 2019, 257, 117910.	20.2	34
77	Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. Science of the Total Environment, 2020, 712, 134525.	8.0	34
78	Fe(III)-loaded activated carbon as catalyst to improve omethoate degradation by ozone in water. Journal of Molecular Catalysis A, 2011, 342-343, 23-29.	4.8	33
79	Degradation kinetics and pathways of three calcium channel blockers under UV irradiation. Water Research, 2015, 86, 9-16.	11.3	33
80	Removal of antibiotic resistance genes in pig manure composting influenced by inoculation of compound microbial agents. Bioresource Technology, 2020, 317, 123966.	9.6	33
81	Degradation of nitro-based pharmaceuticals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential. Water Research, 2017, 119, 83-90.	11.3	32
82	A Green Method to Determine VUV (185Ânm) Fluence Rate Based on Hydrogen Peroxide Production in Aqueous Solution. Photochemistry and Photobiology, 2018, 94, 821-824.	2.5	32
83	Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle. Journal of Hazardous Materials, 2017, 336, 65-70.	12.4	32
84	Impact of reflection on the fluence rate distribution in a UV reactor with various inner walls as measured using a micro-fluorescent silica detector. Water Research, 2012, 46, 3595-3602.	11.3	31
85	Enhanced performance and kinetics of marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Mn(II) and Ni(II) addition. Bioresource Technology, 2018, 249, 1085-1091.	9.6	31
86	Deiodination of iopamidol by zero valent iron (ZVI) enhances formation of iodinated disinfection by-products during chloramination. Water Research, 2018, 129, 319-326.	11.3	31
87	Reducing bromate formation with H+-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms. Chemosphere, 2011, 82, 608-612.	8.2	30
88	Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform. Frontiers of Environmental Science and Engineering in China, 2008, 2, 397-409.	0.8	29
89	Kinetics and mechanism for methiocarb degradation by chlorine dioxide in aqueous solution. Chemosphere, 2010, 79, 646-651.	8.2	29
90	Efficient degradation of pyruvic acid in water by catalytic ozonation with PdO/CeO2. Journal of Molecular Catalysis A, 2011, 348, 70-76.	4.8	29

#	Article	IF	CITATIONS
91	Impact of inner-wall reflection on UV reactor performance as evaluated by using computational fluid dynamics: The role of diffuse reflection. Water Research, 2017, 109, 382-388.	11.3	28
92	UV activated monochloramine promotes metribuzin degradation and disinfection by-products formation. Chemical Engineering Journal, 2020, 385, 123846.	12.7	28
93	Disinfection by-product (DBP) research in China: Are we on the track?. Journal of Environmental Sciences, 2021, 110, 99-110.	6.1	28
94	Kinetics and mechanism for omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water. Chemosphere, 2013, 90, 1966-1972.	8.2	27
95	Micropollutant Degradation by the UV/H ₂ O ₂ Process: Kinetic Comparison among Various Radiation Sources. Environmental Science & amp; Technology, 2019, 53, 5241-5248.	10.0	27
96	Impact of Food Disinfection on Beneficial Biothiol Contents in Vegetables. Journal of Agricultural and Food Chemistry, 2005, 53, 9830-9840.	5.2	26
97	Performance of ozonation and biological activated carbon in eliminating sulfonamides and sulfonamide-resistant bacteria: A pilot-scale study. Chemical Engineering Journal, 2018, 341, 327-334.	12.7	25
98	Transformation of iopamidol and atrazine by peroxymonosulfate under catalysis of a composite iron corrosion product (Fe/Fe3O4): Electron transfer, active species and reaction pathways. Journal of Hazardous Materials, 2021, 403, 123553.	12.4	25
99	Enhanced formation of carbonaceous and nitrogenous disinfection byproducts from biofilm extracellular polymeric substances undercatalysis of copper corrosion products. Science of the Total Environment, 2020, 723, 138160.	8.0	23
100	Efficient elimination and re-growth inhibition of harmful bloom-forming cyanobacteria using surface-functionalized microbubbles. Water Research, 2019, 161, 473-485.	11.3	22
101	Impacts of wastewater treatment plant upgrades on the distribution and risks of pharmaceuticals in receiving rivers. Journal of Hazardous Materials, 2021, 406, 124331.	12.4	22
102	Nitrogen removal through "Candidatus Brocadia sinica―treating high-salinity and low-temperature wastewater with glycine addition: Enhanced performance and kinetics. Bioresource Technology, 2018, 270, 755-761.	9.6	21
103	Nitrogen removal performance of marine anammox bacteria treating nitrogen-rich saline wastewater under different inorganic carbon doses: High inorganic carbon tolerance and carbonate crystal formation. Bioresource Technology, 2019, 288, 121565.	9.6	21
104	In-situ sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Separation and Purification Technology, 2019, 213, 419-425.	7.9	21
105	Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method. Water Research, 2014, 55, 126-132.	11.3	20
106	Accelerated degradation of pesticide by permanganate oxidation: A comparison of organic and inorganic activations. Chemical Engineering Journal, 2019, 369, 1119-1128.	12.7	19
107	Insights into the activation of ozonation by hydroxylamine: Influential factors, degradation mechanism and reaction kinetics. Journal of Hazardous Materials, 2019, 373, 600-607.	12.4	19
108	Improvement of UV disinfection reactor performance by ring baffles: The matching between the hydrodynamics and UV radiation. Chemical Engineering Journal, 2020, 379, 122381.	12.7	19

#	Article	IF	CITATIONS
109	Organic Amines Enhance the Formation of Iodinated Trihalomethanes during Chlorination of Iodide-Containing Waters. Environmental Science & Technology, 2020, 54, 4651-4657.	10.0	19
110	Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reduction. Chemosphere, 2014, 105, 133-138.	8.2	18
111	Enhancement of micropollutant degradation in UV/H2O2 process via iron-containing coagulants. Water Research, 2020, 172, 115497.	11.3	18
112	Simultaneous detection of endocrine disrupting chemicals including conjugates in municipal wastewater and sludge with enhanced sample pretreatment and UPLC-MS/MS. Environmental Sciences: Processes and Impacts, 2015, 17, 1377-1385.	3.5	17
113	Regioselective oxidation of tetracycline by permanganate through alternating susceptible moiety and increasing electron donating ability. Journal of Environmental Sciences, 2020, 87, 281-288.	6.1	17
114	A review of the fluence determination methods for UV reactors: Ensuring the reliability of UV disinfection. Chemosphere, 2022, 286, 131488.	8.2	17
115	Monitoring free chlorine and free bromine in aquarium seawater treated by ozone. Analytical Methods, 2012, 4, 3646.	2.7	16
116	Development of a tri-parameter online monitoring system for UV disinfection reactors. Chemical Engineering Journal, 2013, 222, 101-107.	12.7	16
117	Formation and speciation of disinfection byproducts during chlor(am)ination of aquarium seawater. Journal of Environmental Sciences, 2015, 33, 116-124.	6.1	16
118	Effects of bromide and iodide on the chlorination of diclofenac: Accelerated chlorination and enhanced formation of disinfection by-products. Separation and Purification Technology, 2018, 193, 415-420.	7.9	16
119	Acidic permanganate oxidation of sulfamethoxazole by stepwise electron-proton transfer. Chemosphere, 2019, 222, 71-82.	8.2	16
120	Dimethoate degradation by VUV/UV process: Kinetics, mechanism and economic feasibility. Chemosphere, 2021, 273, 129724.	8.2	16
121	Removal of disinfection by-product precursors in drinking water treatment processes: Is fluorescence parallel factor analysis a promising indicator?. Journal of Hazardous Materials, 2021, 418, 126298.	12.4	16
122	Tracking spatio-temporal dynamics of fluorescence characteristics of Huangpu River, China by parallel factor analysis: Correlation with disinfection by-product precursor and pesticide level variations. Chemosphere, 2021, 283, 131198.	8.2	15
123	Modeling iron release from cast iron pipes in an urban water distribution system caused by source water switch. Journal of Environmental Sciences, 2021, 110, 73-83.	6.1	15
124	UV disinfection of secondary water supply: Online monitoring with micro-fluorescent silica detectors. Chemical Engineering Journal, 2014, 255, 165-170.	12.7	14
125	VUV/UV light inducing accelerated phenol degradation with a low electric input. RSC Advances, 2017, 7, 7640-7647.	3.6	14
126	Development of economical-running strategy for multi-lamp UV disinfection reactors in secondary water supply systems with computational fluid dynamics simulations. Chemical Engineering Journal, 2018, 343, 317-323.	12.7	14

#	Article	IF	CITATIONS
127	Comparison of coagulative colloidal microbubbles with monomeric and polymeric inorganic coagulants for tertiary treatment of distillery wastewater. Science of the Total Environment, 2019, 694, 133649.	8.0	14
128	Formation of carbonaceous and nitrogenous iodinated disinfection byproducts from biofilm extracellular polymeric substances by the oxidation of iodide-containing waters with lead dioxide. Water Research, 2021, 188, 116551.	11.3	14
129	Unraveling the multiple roles of VUV mediated hydroxyl radical in VUV/UV/chlorine process: Kinetic simulation, mechanistic consideration and byproducts formation. Chemical Engineering Journal, 2022, 446, 137066.	12.7	14
130	In situ detailed fluence rate distributions in a UV reactor with multiple low-pressure lamps: Comparison of experimental and model results. Chemical Engineering Journal, 2013, 214, 55-62.	12.7	13
131	Inspection of Feasible Calibration Conditions for <scp>UV</scp> Radiometer Detectors with the <scp>KI</scp> / <scp>KIO</scp> ₃ Actinometer. Photochemistry and Photobiology, 2015, 91, 68-73.	2.5	13
132	Nitrogen removal mechanism of marine anammox bacteria treating nitrogen-laden saline wastewater in response to ultraviolet (UV) irradiation: High UV tolerance and microbial community shift. Bioresource Technology, 2021, 320, 124325.	9.6	13
133	Degradation of methiocarb by monochloramine in water treatment: Kinetics and pathways. Water Research, 2014, 50, 237-244.	11.3	12
134	Enhanced Oxidation of Tetracycline by Permanganate via the Alkali-Induced Alteration of the Highest Occupied Molecular Orbital and the Electrostatic Potential. Industrial & Engineering Chemistry Research, 2017, 56, 4703-4708.	3.7	12
135	Why does dissolved oxygen govern Mn(III) formation and micro-pollutant abatement in the permanganate/bisulfite process?. Chemical Engineering Journal, 2020, 391, 123556.	12.7	12
136	Deciphering nitrogen removal mechanism through marine anammox bacteria treating nitrogen-laden saline wastewater under various phosphate doses: Microbial community shift and phosphate crystal. Bioresource Technology, 2021, 325, 124707.	9.6	12
137	Methiocarb degradation by free chlorine in water treatment: Kinetics and pathways. Chemical Engineering Journal, 2013, 232, 10-16.	12.7	11
138	Biodegradation of Sulfamethazine by Activated Sludge: Lab-Scale Study. Journal of Environmental Engineering, ASCE, 2014, 140, .	1.4	11
139	On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector. Environmental Science & Technology, 2017, 51, 8094-8100.	10.0	11
140	Oxidative removal of quinclorac by permanganate through a rate-limiting [3 + 2] cycloaddition reaction. Environmental Sciences: Processes and Impacts, 2018, 20, 790-797.	3.5	11
141	Determination of pKa and the corresponding structures of quinclorac using combined experimental and theoretical approaches. Journal of Molecular Structure, 2018, 1152, 53-60.	3.6	11
142	Degradation of micropolluants in flow-through VUV/UV/H2O2 reactors: Effects of H2O2 dosage and reactor internal diameter. Journal of Environmental Sciences, 2021, 110, 28-37.	6.1	11
143	Activation of organic chloramine by UV photolysis: A non-negligible oxidant for micro-pollutant abatement and disinfection by-product formation. Water Research, 2021, 207, 117795.	11.3	11

A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Overlock 101Tf 50 57 T 144

#	Article	IF	CITATIONS
145	Estimating the fluence delivery in UV disinfection reactors using a â€~detector-model' combination method. Chemical Engineering Journal, 2013, 233, 39-46.	12.7	10
146	Formation of disinfection byproducts in a recirculating mariculture system: emerging concerns. Environmental Sciences: Processes and Impacts, 2015, 17, 471-477.	3.5	10
147	Micropollutant degradation by UV/H2O2 in drinking water: Facilitated prediction through combination of model simulation and portable measurement. Water Research, 2022, 221, 118794.	11.3	10
148	Development of monitored tunable biodosimetry for fluence validation in an ultraviolet disinfection reactor. Separation and Purification Technology, 2013, 117, 12-17.	7.9	9
149	The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: A review. Science of the Total Environment, 2022, 833, 155250.	8.0	9
150	A Mini-Fluidic UV Photoreaction System for Bench-Scale Photochemical Studies. Environmental Science and Technology Letters, 2015, 2, 297-301.	8.7	8
151	Experimental Assessment of Photon Fluence Rate Distributions in a Medium-Pressure UV Photoreactor. Environmental Science & Technology, 2017, 51, 3453-3460.	10.0	8
152	Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination. Chemosphere, 2021, 268, 129340.	8.2	8
153	Removal of recalcitrant organics in reverse osmosis concentrate from coal chemical industry by UV/H2O2 and UV/PDS: Efficiency and kinetic modeling. Chemosphere, 2022, 287, 131999.	8.2	8
154	Organic pollutant degradation by UV/peroxydisulfate process: Impacts of UV light source and phosphate buffer. Chemosphere, 2022, 292, 133387.	8.2	7
155	Effective Inhibition of Bromate Formation with a Granular Molecular Sieve Catalyst Ce-MCM-48 during Ozonation: Pilot-Scale Study. Journal of Environmental Engineering, ASCE, 2013, 139, 235-240.	1.4	6
156	Impact of carrier on ammonia and organics removal from zero-discharge marine recirculating aquaculture system with sequencing batch biofilm reactor (SBBR). Environmental Science and Pollution Research, 2020, 27, 34614-34623.	5.3	6
157	Insights into microbial community variability and functional genes of various Candidatus Scalindua-based anammox processes treating nitrogen-rich saline wastewater. Science of the Total Environment, 2021, 766, 142544.	8.0	6
158	Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. Journal of Hazardous Materials, 2022, 428, 128249.	12.4	6
159	Experimental Evaluation of Turbidity Impact on the Fluence Rate Distribution in a UV Reactor Using a Microfluorescent Silica Detector. Environmental Science & Technology, 2017, 51, 13241-13247.	10.0	5
160	Improved Method for Real-Time Fluence Monitoring in UV Reactors. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	4
161	Is Mn(III) a principal oxidant for trace organic contaminant abatement in permanganate/bisulfate process?. Chemical Engineering Journal, 2022, 433, 134548.	12.7	4
162	The Ultrafiltration Process Enhances Antibiotic Removal in the Full-Scale Advanced Treatment of Drinking Water. Engineering, 2023, 28, 16-20.	6.7	4

#	Article	IF	CITATIONS
163	Morphologically-different cells and colonies cause distinctive performance of coagulative colloidal ozone microbubbles in simultaneously removing bloom-forming cyanobacteria and microcystin-LR. Journal of Hazardous Materials, 2022, 435, 128986.	12.4	3
164	Interactions between H2O2 and dissolved organic matter during granular activated carbon-based residual H2O2 quenching from the upstream UV/H2O2 process. Journal of Environmental Sciences, 2023, 128, 139-149.	6.1	3
165	Sulfate radical-based advanced oxidation processes for industrial wastewater treatment. , 2021, , 431-462.		2
166	Revealing photon transmission in an ultraviolet reactor: Advanced approaches for measuring fluence rate distribution in water for model validation. Journal of Environmental Sciences, 2021, 110, 169-177.	6.1	2
167	Metabonomic and transcriptomic modulations of HepG2 cells induced by the CuO-catalyzed formation of disinfection byproducts from biofilm extracellular polymeric substances in copper pipes. Water Research, 2022, 216, 118318.	11.3	2
168	Formation control of bromate and trihalomethanes during ozonation of bromide-containing water with chemical addition: Hydrogen peroxide or ammonia?. Journal of Environmental Sciences, 2021, 110, 111-118.	6.1	1
169	30th Anniversary of the key laboratory of drinking water science and technology: Preface. Journal of Environmental Sciences, 2021, 110, 1.	6.1	0