Kongchang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5532695/publications.pdf

Version: 2024-02-01

36 papers

2,467 citations

201385 27 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

3894 citing authors

#	Article	IF	CITATIONS
1	Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials, 2016, 101, 217-228.	5.7	249
2	Progressive Macromolecular Selfâ€Assembly: From Biomimetic Chemistry to Bioâ€Inspired Materials. Advanced Materials, 2013, 25, 5215-5256.	11.1	210
3	A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells. Journal of the American Chemical Society, 2015, 137, 7337-7346.	6.6	202
4	Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials, 2019, 210, 51-61.	5.7	179
5	Dynamic and Cell-Infiltratable Hydrogels as Injectable Carrier of Therapeutic Cells and Drugs for Treating Challenging Bone Defects. ACS Central Science, 2019, 5, 440-450.	5.3	166
6	Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Science Translational Medicine, 2020, 12, .	5.8	147
7	Carbohydrate-Based Macromolecular Biomaterials. Chemical Reviews, 2021, 121, 10950-11029.	23.0	122
8	Robust Biopolymeric Supramolecular "Hostâ^Guest Macromerâ€Hydrogels Reinforced by <i>in Situ</i> Formed Multivalent Nanoclusters for Cartilage Regeneration. Macromolecules, 2016, 49, 866-875.	2.2	102
9	Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nature Communications, 2021, 12, 3514.	5.8	92
10	Mussel-mimetic hydrogels with defined cross-linkers achieved via controlled catechol dimerization exhibiting tough adhesion for wet biological tissues. Chemical Communications, 2017, 53, 12000-12003.	2.2	76
11	Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation. ACS Nano, 2017, 11, 9636-9649.	7.3	65
12	Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. Science Advances, 2019, 5, eaaw3896.	4.7	64
13	Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nature Communications, 2019, 10, 2705.	5.8	60
14	One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Materials, 2018, 10, e455-e455.	3.8	59
15	Cell-Mediated Degradation Regulates Human Mesenchymal Stem Cell Chondrogenesis and Hypertrophy in MMP-Sensitive Hyaluronic Acid Hydrogels. PLoS ONE, 2014, 9, e99587.	1.1	57
16	Building Nanowires from Micelles: Hierarchical Self-Assembly of Alternating Amphiphilic Glycopolypeptide Brushes with Pendants of High-Mannose Glycodendron and Oligophenylalanine. Journal of the American Chemical Society, 2016, 138, 12387-12394.	6.6	54
17	Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression. NPG Asia Materials, 2018, 10, 788-799.	3.8	50
18	Mussel-Inspired Injectable Hydrogel Adhesive Formed under Mild Conditions Features Near-Native Tissue Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47707-47719.	4.0	49

#	Article	IF	Citations
19	Dual Molecular Recognition Leading to a Protein–Polymer Conjugate and Further Self-Assembly. ACS Macro Letters, 2013, 2, 278-283.	2.3	46
20	Highly Dynamic Nanocomposite Hydrogels Selfâ€Assembled by Metal Ionâ€Ligand Coordination. Small, 2019, 15, e1900242.	5.2	45
21	Multivalent Host–Guest Hydrogels as Fatigue-Resistant 3D Matrix for Excessive Mechanical Stimulation of Encapsulated Cells. Chemistry of Materials, 2017, 29, 8604-8610.	3.2	42
22	Bioadhesive Polymersome for Localized and Sustained Drug Delivery at Pathological Sites with Harsh Enzymatic and Fluidic Environment via Supramolecular Host–Guest Complexation. Small, 2018, 14, 1702288.	5.2	40
23	Does PNIPAM block really retard the micelle-to-vesicle transition of its copolymer?. Polymer, 2011, 52, 3647-3654.	1.8	39
24	Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing. Biomaterials, 2017, 149, 12-28.	5.7	36
25	Chemically Stable, Strongly Adhesive Sealant Patch for Intestinal Anastomotic Leakage Prevention. Advanced Functional Materials, 2021, 31, 2007099.	7.8	34
26	Preserving the adhesion of catechol-conjugated hydrogels by thiourea–quinone coupling. Biomaterials Science, 2016, 4, 1726-1730.	2.6	33
27	Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers. Macromolecular Bioscience, 2016, 16, 1019-1026.	2.1	28
28	Stretchable and Bioadhesive Supramolecular Hydrogels Activated by a One-Stone–Two-Bird Postgelation Functionalization Method. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16328-16335.	4.0	25
29	Reversible vesicles of supramolecular hybrid nanoparticles. Soft Matter, 2012, 8, 3300.	1.2	22
30	Biomimetic Presentation of Cryptic Ligands <i>via</i> Single-Chain Nanogels for Synergistic Regulation of Stem Cells. ACS Nano, 2020, 14, 4027-4035.	7.3	22
31	Manipulating the mechanical properties of biomimetic hydrogels with multivalent host–guest interactions. Journal of Materials Chemistry B, 2019, 7, 1726-1733.	2.9	15
32	Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers. Polymers, 2020, 12, 633.	2.0	10
33	Reversible Oxygen Sensing Based on Multi-Emission Fluorescence Quenching. Sensors, 2020, 20, 477.	2.1	9
34	Reversible and Broad-Range Oxygen Sensing Based on Purely Organic Long-Lived Photoemitters. ACS Applied Polymer Materials, 2021, 3, 2480-2488.	2.0	5
35	Robust and bioadhesive supramolecular hydrogel stabilized by pre-assembled host-guest complexation for in situ tissue regeneration. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
36	Immobilization of polymersome in hydrogels via host-guest complexation for triggered drug delivery. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0