Tomasz Zalewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5532679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Positive Influence of Therapeutic Agent on Relaxivities of Gadolinium-Loaded Liposomal Theranostics. Applied Magnetic Resonance, 2021, 52, 143-155.	1.2	2
2	Organic–Inorganic Hybrid Nanoparticles Synthesized with <i>Hypericum perforatum</i> Extract: Potential Agents for Photodynamic Therapy at Ultra-low Power Light. ACS Sustainable Chemistry and Engineering, 2021, 9, 1625-1645.	6.7	9
3	Assessment of Immunological Potential of Glial Restricted Progenitor Graft In Vivo—Is Immunosuppression Mandatory?. Cells, 2021, 10, 1804.	4.1	5
4	Insight into theranostic nanovesicles prepared by thin lipid hydration and microfluidic method. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111871.	5.0	10
5	Spin–Lattice Relaxation and Diffusion Processes in Aqueous Solutions of Gadolinium-Based Upconverting Nanoparticles at Different Magnetic Fields. Applied Magnetic Resonance, 2019, 50, 553-561.	1.2	6
6	Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Scientific Reports, 2018, 8, 3682.	3.3	73
7	Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. Journal of Inorganic Biochemistry, 2018, 180, 1-14.	3.5	40
8	Notice of Removal: The Positive Influence of Zinc Phthalocyanine on MRI Contrasts Helps Reducing Gadolinium Doses in Anticancer-MriTheranostics. , 2018, , .		0
9	Functionalized multimodal ZnO@Gd 2 O 3 nanosystems to use as perspective contrast agent for MRI. Applied Surface Science, 2017, 404, 129-137.	6.1	12
10	Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloids. Materials and Design, 2017, 133, 307-324.	7.0	34
11	ZnO@Gd2O3 core/shell nanoparticles for biomedical applications: Physicochemical, in vitro and in vivo characterization. Materials Science and Engineering C, 2017, 80, 603-615.	7.3	17
12	Cytotoxicity and imaging studies of β-NaGdF ₄ :Yb ³⁺ Er ³⁺ @PEG-Mo nanorods. RSC Advances, 2016, 6, 95633-95643.	3.6	12
13	PEC–MWCNT/Fe hybrids as multi-modal contrast agents for MRI and optical imaging. RSC Advances, 2016, 6, 49891-49902.	3.6	10
14	Magnetic and hydrophilic MWCNT/Fe composites as potential T2-weighted MRI contrast agents. Carbon, 2015, 94, 1012-1020.	10.3	20
15	Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2015, 384, 320-327.	2.3	34
16	Scaffold-aided repair of articular cartilage studied by MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 177-185.	2.0	8
17	A comparative study of water distribution and dehydrin protein localization in maturing pea seeds. Journal of Plant Physiology, 2008, 165, 1940-1946.	3.5	20
18	Changes in water status and water distribution in maturing lupin seeds studied by MR imaging and NMR spectroscopy. Journal of Experimental Botany, 2007, 58, 3961-3969.	4.8	33

#	Article	IF	CITATIONS
19	Water uptake and distribution in germinating lupine seeds studied by magnetic resonance imaging and NMR spectroscopy. Physiologia Plantarum, 2007, 130, 23-32.	5.2	36
20	A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. Journal of Plant Physiology, 2006, 163, 1207-1220.	3.5	98