Haipeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55322/publications.pdf Version: 2024-02-01

HAIDENC CHEN

#	Article	IF	CITATIONS
1	A series of anionic host coordination polymers based on azoxybenzene carboxylate: structures, luminescence and magnetic properties. Dalton Transactions, 2017, 46, 14192-14200.	1.6	145
2	Single-Crystalline Particles: An Effective Way to Ameliorate the Intragranular Cracking, Thermal Stability, and Capacity Fading of the LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Electrodes. Journal of the Electrochemical Society, 2018, 165, A3040-A3047.	1.3	96
3	2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Applied Surface Science, 2019, 469, 854-863.	3.1	79
4	Carbon-confined magnesium hydride nano-lamellae for catalytic hydrogenation of carbon dioxide to lower olefins. Journal of Catalysis, 2019, 379, 121-128.	3.1	47
5	In-situ synthesis of Mg2Ni-Ce6O11 catalyst for improvement of hydrogen storage in magnesium. Chemical Engineering Journal, 2020, 385, 123448.	6.6	44
6	Mechanochemical in-situ incorporation of Ni on MgO/MgH2 surface for the selective O-/C-terminal catalytic hydrogenation of CO2 to CH4. Journal of Catalysis, 2021, 394, 397-405.	3.1	41
7	Enhancement in dehydriding performance of magnesium hydride by iron incorporation: A combined experimental and theoretical investigation. Journal of Power Sources, 2016, 322, 179-186.	4.0	40
8	MgH ₂ /Cu <i>_x</i> O Hydrogen Storage Composite with Defect-Rich Surfaces for Carbon Dioxide Hydrogenation. ACS Applied Materials & Interfaces, 2019, 11, 31009-31017.	4.0	37
9	A facile route for tuning emission and magnetic properties by controlling lanthanide ions in coordination polymers incorporating mixed aromatic carboxylate ligands. Journal of Solid State Chemistry, 2018, 268, 22-29.	1.4	35
10	Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium. Fuel, 2013, 109, 68-75.	3.4	34
11	Nano-confined magnesium for hydrogen storage from reactive milling with anthracite carbon as milling aid. International Journal of Hydrogen Energy, 2014, 39, 13628-13633.	3.8	33
12	Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study. Applied Surface Science, 2017, 394, 371-377.	3.1	33
13	Oxygen vacancy in magnesium/cerium composite from ball milling for hydrogen storage improvement. International Journal of Hydrogen Energy, 2019, 44, 13606-13612.	3.8	29
14	Solid-phase hydrogen in a magnesium–carbon composite for efficient hydrogenation of carbon disulfide. Journal of Materials Chemistry A, 2018, 6, 3055-3062.	5.2	22
15	Amphiphilic calix[4]arenes as a highly selective gas chromatographic stationary phase for aromatic amine isomers. Journal of Chromatography A, 2019, 1601, 310-318.	1.8	22
16	Novel application of MgH2/MoS2 hydrogen storage materials to thiophene hydrodesulfurization: A combined experimental and theoretical case study. Materials and Design, 2018, 158, 213-223.	3.3	21
17	Cationic bipy induced the three dimensional supramolecules based on azoxybenzene tetracarboxylate: Structures and NIR luminescence property. Polyhedron, 2019, 157, 420-427.	1.0	20
18	Crystalline structure, energy calculation and dehydriding thermodynamics of magnesium hydride from reactive milling. International Journal of Hydrogen Energy, 2015, 40, 11484-11490.	3.8	18

HAIPENG CHEN

#	Article	IF	CITATIONS
19	A copper-based sorbent with oxygen-vacancy defects from mechanochemical reduction for carbon disulfide absorption. Journal of Materials Chemistry A, 2016, 4, 17207-17214.	5.2	18
20	Performance and selectivity of amphiphilic pillar[5]arene as stationary phase for capillary gas chromatography. Journal of Chromatography A, 2022, 1671, 463008.	1.8	18
21	Effect of carbon from anthracite coal on decomposition kinetics of magnesium hydride. Journal of Alloys and Compounds, 2014, 592, 231-237.	2.8	16
22	Engineering the Oxygen Vacancies in Na ₂ Ti ₃ O ₇ for Boosting Its Catalytic Performance in MgH ₂ Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 363-371.	3.2	16
23	Effect of atomic iron on hydriding reaction of magnesium: Atomic-substitution and atomic-adsorption cases from a density functional theory study. Applied Surface Science, 2020, 504, 144489.	3.1	14
24	Insight into the effects of electronegativity on the H ₂ catalytic activation for CO ₂ hydrogenation: four transition metal cases from a DFT study. Catalysis Science and Technology, 2020, 10, 5641-5647.	2.1	13
25	Hydrogen activation on aluminium-doped magnesium hydride surface for methanation of carbon dioxide. Applied Surface Science, 2020, 515, 146038.	3.1	13
26	In Situ Formation of Mg ₂ Ni on Magnesium Surface via Hydrogen Activation for Improving Hydrogen Sorption Performance. ACS Applied Energy Materials, 2022, 5, 6043-6049.	2.5	10
27	Evolution of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon as milling aid. Journal of Alloys and Compounds, 2013, 581, 472-478.	2.8	9
28	Insight into the energy conversion and structural evolution of magnesium hydride during high-energy ball milling for its controllable synthesis. Journal of Alloys and Compounds, 2020, 836, 155312.	2.8	7
29	p-Nitro-tetradecyloxy-calix[4]arene as a highly selective stationary phase for gas chromatographic separations. New Journal of Chemistry, 2019, 43, 16960-16967.	1.4	5
30	Insight into the activation of CO2 and H2 on K2O-adsorbed Fe5C2(110) for olefins production: A density functional theory study. Molecular Catalysis, 2022, 524, 112323.	1.0	4
31	Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 299-304.	0.4	3