## Stuart L James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5532111/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanochemistry Can Reduce Life Cycle Environmental Impacts of Manufacturing Active<br>Pharmaceutical Ingredients. ACS Sustainable Chemistry and Engineering, 2022, 10, 1430-1439.                      | 6.7  | 54        |
| 2  | Selective Hydrogenation of Stearic Acid Using Mechanochemically Prepared Titania-Supported Pt and<br>Pt–Re Bimetallic Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 6934-6941.         | 6.7  | 8         |
| 3  | Type 3 Porous Liquids for the Separation of Ethane and Ethene. ACS Applied Materials & Interfaces, 2021, 13, 932-936.                                                                                    | 8.0  | 32        |
| 4  | Pillararene for fluorescence detection of <i>n</i> -alkane vapours. Materials Chemistry Frontiers, 2021, 5, 7910-7920.                                                                                   | 5.9  | 4         |
| 5  | Towards MOFs' mass market adoption: MOF Technologies' efficient and versatile one-step extrusion of shaped MOFs directly from raw materials. Faraday Discussions, 2021, 231, 312-325.                    | 3.2  | 21        |
| 6  | The changing state of porous materials. Nature Materials, 2021, 20, 1179-1187.                                                                                                                           | 27.5 | 147       |
| 7  | Noria and its derivatives as hosts for chemically and thermally robust Type II porous liquids. Chemical Science, 2021, 12, 14230-14240.                                                                  | 7.4  | 10        |
| 8  | Greener Dye Synthesis: Continuous, Solventâ€Free Synthesis of Commodity Perylene Diimides by<br>Twin‣crew Extrusion. Angewandte Chemie - International Edition, 2020, 59, 4478-4483.                     | 13.8 | 46        |
| 9  | Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks.<br>Chemical Science, 2020, 11, 2141-2147.                                                              | 7.4  | 64        |
| 10 | Solvent-Free, Continuous Synthesis of Hydrazone-Based Active Pharmaceutical Ingredients by<br>Twin-Screw Extrusion. ACS Sustainable Chemistry and Engineering, 2020, 8, 12230-12238.                     | 6.7  | 71        |
| 11 | Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE). Chemical Science, 2020, 11, 6582-6589.                                                                         | 7.4  | 30        |
| 12 | Greener Dye Synthesis: Continuous, Solventâ€Free Synthesis of Commodity Perylene Diimides by<br>Twinâ€Screw Extrusion. Angewandte Chemie, 2020, 132, 4508-4513.                                          | 2.0  | 16        |
| 13 | Type 3 porous liquids based on non-ionic liquid phases – a broad and tailorable platform of selective,<br>fluid gas sorbents. Chemical Science, 2020, 11, 2077-2084.                                     | 7.4  | 81        |
| 14 | Phenomenological Inferences on the Kinetics of a Mechanically Activated Knoevenagel Condensation:<br>Understanding the "Snowball―Kinetic Effect in Ball Milling. Molecules, 2019, 24, 3600.              | 3.8  | 15        |
| 15 | Insights into mechanochemical reactions at the molecular level: simulated indentations of aspirin and meloxicam crystals. Chemical Science, 2019, 10, 2924-2929.                                         | 7.4  | 29        |
| 16 | Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion:<br>application in the Juliġ–Colonna enantioselective epoxidation. Green Chemistry, 2018, 20, 1262-1269. | 9.0  | 94        |
| 17 | Use of Batch Mixing To Investigate the Continuous Solvent-Free Mechanical Synthesis of OLED<br>Materials by Twin-Screw Extrusion (TSE). ACS Sustainable Chemistry and Engineering, 2018, 6, 193-201.     | 6.7  | 19        |
| 18 | Translating solid state organic synthesis from a mixer mill to a continuous twin screw extruder.<br>Green Chemistry, 2018, 20, 4443-4447.                                                                | 9.0  | 57        |

STUART L JAMES

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using<br>Wilkinson's catalyst. Chemical Communications, 2018, 54, 8355-8358.                                        | 4.1  | 27        |
| 20 | Organic synthesis by Twin Screw Extrusion (TSE): continuous, scalable and solvent-free. Green Chemistry, 2017, 19, 1507-1518.                                                                           | 9.0  | 160       |
| 21 | Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chemical Science, 2017, 8, 2640-2651.                                                                                   | 7.4  | 115       |
| 22 | Mechanoenzymatic peptide and amide bond formation. Green Chemistry, 2017, 19, 2620-2625.                                                                                                                | 9.0  | 81        |
| 23 | Feedback Kinetics in Mechanochemistry: The Importance of Cohesive States. Angewandte Chemie -<br>International Edition, 2017, 56, 15252-15256.                                                          | 13.8 | 86        |
| 24 | Feedback Kinetics in Mechanochemistry: The Importance of Cohesive States. Angewandte Chemie, 2017, 129, 15454-15458.                                                                                    | 2.0  | 34        |
| 25 | Solventless mechanochemical metallation of porphyrins. Green Chemistry, 2017, 19, 102-105.                                                                                                              | 9.0  | 29        |
| 26 | The Dam Bursts for Porous Liquids. Advanced Materials, 2016, 28, 5712-5716.                                                                                                                             | 21.0 | 88        |
| 27 | <i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.                             | 13.7 | 194       |
| 28 | Assessing the effect of reducing agents on the selective catalytic reduction of NO <sub>x</sub> over Ag/Al <sub>2</sub> O <sub>3</sub> catalysts. Catalysis Science and Technology, 2016, 6, 1661-1666. | 4.1  | 32        |
| 29 | Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent.<br>Chemical Science, 2015, 6, 1645-1649.                                                                | 7.4  | 347       |
| 30 | Supramolecular gels in crystal engineering. CrystEngComm, 2015, 17, 7976-7977.                                                                                                                          | 2.6  | 31        |
| 31 | Liquids with permanent porosity. Nature, 2015, 527, 216-220.                                                                                                                                            | 27.8 | 402       |
| 32 | Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple<br>â€~pseudo-fluid' model for a ball milling reaction. Chemical Communications, 2014, 50, 1585.         | 4.1  | 119       |
| 33 | One-pot two-step mechanochemical synthesis: ligand and complex preparation without isolating intermediates. Green Chemistry, 2014, 16, 1374-1382.                                                       | 9.0  | 118       |
| 34 | Tackling a difficult question: how do crystals of coordination polymers form?. IUCrJ, 2014, 1, 263-264.                                                                                                 | 2.2  | 6         |
| 35 | Mechanochemistry. Chemical Society Reviews, 2013, 42, 7494.                                                                                                                                             | 38.1 | 139       |
| 36 | Application of heterogeneous catalysts prepared by mechanochemical synthesis. Chemical Society Reviews, 2013, 42, 7701.                                                                                 | 38.1 | 177       |

STUART L JAMES

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Porous organic–inorganic hybrid aerogels based on Cr <sup>3+</sup> /Fe <sup>3+</sup> and rigid bridging carboxylates. Journal of Materials Chemistry, 2012, 22, 1862-1867.                                                              | 6.7  | 87        |
| 38 | A more direct way to make catalysts: one-pot ligand-assisted aerobic stripping and electrodeposition of copper on graphite. Green Chemistry, 2012, 14, 1643.                                                                            | 9.0  | 3         |
| 39 | Mechanochemical interconversion between discrete complexes and coordination networks – formal hydration/dehydration by LAG. CrystEngComm, 2012, 14, 1994.                                                                               | 2.6  | 27        |
| 40 | Efficient, Scalable, and Solvent-free Mechanochemical Synthesis of the OLED Material<br>Alq <sub>3</sub> (q = 8-Hydroxyquinolinate). Crystal Growth and Design, 2012, 12, 5869-5872.                                                    | 3.0  | 51        |
| 41 | Alkylated organic cages: from porous crystals to neat liquids. Chemical Science, 2012, 3, 2153.                                                                                                                                         | 7.4  | 123       |
| 42 | Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41, 413-447.                                                                                                                             | 38.1 | 2,281     |
| 43 | Low-Temperature Selective Catalytic Reduction (SCR) of NO <i><sub>x</sub></i> with <i>n</i> -Octane<br>Using Solvent-Free Mechanochemically Prepared Ag/Al <sub>2</sub> O <sub>3</sub> Catalysts. ACS<br>Catalysis, 2011, 1, 1257-1262. | 11.2 | 54        |
| 44 | Synthesis of nucleoside analogues in a ball mill: fast, chemoselective and high yielding acylation without undesirable solvents. Green Chemistry, 2011, 13, 1778.                                                                       | 9.0  | 41        |
| 45 | High Reactivity of Metal–Organic Frameworks under Grinding Conditions: Parallels with Organic<br>Molecular Materials. Angewandte Chemie - International Edition, 2010, 49, 3916-3919.                                                   | 13.8 | 183       |
| 46 | Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2<br>(BTC = 1,3,5-benzenetricarboxylate). CrystEngComm, 2010, 12, 4063.                                                                   | 2.6  | 123       |
| 47 | Mechanochemical synthesis of homo- and hetero-rare-earth(iii) metal–organic frameworks by ball<br>milling. CrystEngComm, 2010, 12, 3515.                                                                                                | 2.6  | 86        |
| 48 | Channelled crystals formed by tubular stacking of a 4 + 4 phenylene-piperazinemacrocycle.<br>CrystEngComm, 2010, 12, 1048-1050.                                                                                                         | 2.6  | 7         |
| 49 | Phosphines as building blocks in coordination-based self-assembly. Chemical Society Reviews, 2009, 38, 1744.                                                                                                                            | 38.1 | 119       |
| 50 | Metal–organic gels as functionalisable supports for catalysis. New Journal of Chemistry, 2009, 33,<br>1070.                                                                                                                             | 2.8  | 87        |
| 51 | Fast, quantitative nucleoside protection under solvent-free conditions. Green Chemistry, 2008, 10, 627.                                                                                                                                 | 9.0  | 46        |
| 52 | An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends. CrystEngComm, 2008, 10, 1839.                                                                                                     | 2.6  | 167       |
| 53 | A pillared-grid MOF with large pores based on the Cu2(O2CR)4 paddle-wheel. CrystEngComm, 2007, 9, 449.                                                                                                                                  | 2.6  | 113       |
| 54 | Porous Liquids. Chemistry - A European Journal, 2007, 13, 3020-3025.                                                                                                                                                                    | 3.3  | 220       |

STUART L JAMES

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 2006, 8, 211.                                                                                                                           | 2.6  | 487       |
| 56 | Effect of Coordinating Solvents on Solution Speciation and the Crystallisation via ROP of a<br>Triphos-Silver Coordination Cage. Journal of Inorganic and Organometallic Polymers and Materials,<br>2005, 15, 431-437. | 3.7  | 13        |
| 57 | ROP relationships between coordination polymers and discrete complexes: discrete bowl-shaped isomers of a 2-dimensional {M4L3}n polymer. CrystEngComm, 2004, 6, 408.                                                   | 2.6  | 38        |
| 58 | Ring-opening polymerisation of coordination rings and cages. Macromolecular Symposia, 2004, 209, 119-132.                                                                                                              | 0.7  | 26        |
| 59 | Metal-organic frameworks. Chemical Society Reviews, 2003, 32, 276.                                                                                                                                                     | 38.1 | 3,163     |
| 60 | Phosphine-based coordination cages and nanoporous coordination polymers. Macromolecular Symposia, 2003, 196, 187-199.                                                                                                  | 0.7  | 19        |
| 61 | Triply-bridged diphos disilver helical complexes [Ag2(μ2-dppa-P,P′)3(anion)2] [dppa =<br>bis(diphenylphosphino)acetylene]. Chemical Communications, 2000, , 617-618.                                                   | 4.1  | 27        |