Hugh Rollinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5532024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do all Archaean TTG rock compositions represent former melts?. Precambrian Research, 2021, 367, 106448.	1.2	23
2	The rare earth element geochemistry of mafic granulites from the Neoarchaean northern marginal zone of the Limpopo Belt, Zimbabwe: Insights into mantle processes during an episode of crustal growth. Journal of African Earth Sciences, 2021, 186, 104434.	0.9	2
3	Dunites in the mantle section of the Oman ophiolite – The boninite connection. Lithos, 2019, 334-335, 1-7.	0.6	15
4	The eastern French Pyrenees: from mountain belt to foreland basin. Geology Today, 2019, 35, 228-240.	0.3	1
5	Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt. Lithos, 2018, 310-311, 381-391.	0.6	32
6	The geochemical evolution of Archaean felsic gneisses in the West African Craton in Sierra Leone. Journal of African Earth Sciences, 2018, 143, 28-39.	0.9	7
7	Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers, 2018, 9, 689-714.	4.3	40
8	There were no large volumes of felsic continental crust in the early Earth. , 2017, 13, 235-246.		28
9	Masirah – the other Oman ophiolite: A better analogue for mid-ocean ridge processes?. Geoscience Frontiers, 2017, 8, 1253-1262.	4.3	21
10	Archaean chromitites show constant Fe3+/ΣFe in Earth's asthenospheric mantle since 3.8 Ga. Lithos, 2017, 282-283, 316-325.	0.6	30
11	Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon. Geology, 2017, 45, 975-978.	2.0	81
12	Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research, 2016, 281, 1-12.	1.2	41
13	Surprises from the top of the mantle transition zone. Geology Today, 2016, 32, 58-64.	0.3	11
14	Comment on â€~Podiform chromitites do form beneath mid-ocean ridges' by Arai, S. and Miura, M Lithos, 2016, 254-255, 131-133.	0.6	4
15	Slab and sediment melting during subduction initiation: granitoid dykes from the mantle section of the Oman ophiolite. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	36
16	The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review. Gondwana Research, 2015, 27, 543-554.	3.0	59
17	Tectonic evolution of the Oman Mountains: an introduction. Geological Society Special Publication, 2014, 392, 1-7.	0.8	19
18	Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	29

#	Article	IF	CITATIONS
19	Plagiogranites from the mantle section of the Oman Ophiolite: models for early crustal evolution. Geological Society Special Publication, 2014, 392, 247-261.	0.8	22
20	A (virtual) field excursion through the Oman ophiolite. Geology Today, 2014, 30, 110-118.	0.3	1
21	Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 2013, 177, 314-327.	0.6	75
22	New Mössbauer measurements of Fe3+/ΣFe ratios in chromites from the early Proterozoic Bushveld Complex, South Africa. Precambrian Research, 2013, 228, 194-205.	1.2	19
23	Phanerozoic sanukitoids from Caledonian Scotland: Implications for Archean subduction. Geology, 2012, 40, 1079-1082.	2.0	76
24	Archaean Intracrustal Differentiation from Partial Melting of MetagabbroField and Geochemical Evidence from the Central Region of the Lewisian Complex, NW Scotland. Journal of Petrology, 2012, 53, 2115-2138.	1.1	64
25	Geochemical constraints on the composition of Archaean lower continental crust: Partial melting in the Lewisian granulites. Earth and Planetary Science Letters, 2012, 351-352, 1-12.	1.8	31
26	New Mössbauer measurements of Fe ³⁺ /ΣFe in chromites from the mantle section of the Oman ophiolite: evidence for the oxidation of the sub-oceanic mantle. Mineralogical Magazine, 2012, 76, 579-596.	0.6	22
27	The trace element geochemistry of clinopyroxenes from pyroxenites in the Lewisian of NW Scotland: insights into light rare earth element mobility during granulite facies metamorphism. Contributions To Mineralogy and Petrology, 2012, 163, 319-335.	1.2	16
28	Petrogenesis of early cretaceous carbonatite and ultramafic lamprophyres in a diatreme in the Batain Nappes, Eastern Oman continental margin. Contributions To Mineralogy and Petrology, 2011, 161, 47-74.	1.2	24
29	The growth of the Zimbabwe Craton during the late Archaean: an ion microprobe U–Pb zircon study. Journal of the Geological Society, 2011, 168, 941-952.	0.9	25
30	Coupled evolution of Archean continental crust and subcontinental lithospheric mantle. Geology, 2010, 38, 1083-1086.	2.0	60
31	Chromitites from the Fiskenæsset anorthositic complex, West Greenland: clues to late Archaean mantle processes. Geological Society Special Publication, 2010, 338, 197-212.	0.8	32
32	The Lewisian Complex: insights into deep crustal evolution. Geological Society Special Publication, 2010, 335, 51-79.	0.8	31
33	New models for the genesis of plagiogranites in the Oman ophiolite. Lithos, 2009, 112, 603-614.	0.6	155
34	The nature of the subcontinental lithospheric mantle beneath the Arabian Shield: Mantle xenoliths from southern Syria. Precambrian Research, 2009, 172, 323-333.	1.2	17
35	The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions To Mineralogy and Petrology, 2008, 156, 273-288.	1.2	251
36	Ophiolitic trondhjemites: a possible analogue for Hadean felsic 'crust'. Terra Nova, 2008, 20, 364-369.	0.9	46

#	Article	IF	CITATIONS
37	Secular evolution of the continental crust: Implications for crust evolution models. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	49
38	Petrology of a Late Archaean, Highly Potassic, Sanukitoid Pluton from the Baltic Shield: Insights into Late Archaean Mantle Metasomatism. Journal of Petrology, 2008, 49, 393-420.	1.1	92
39	When did plate tectonics begin?. Geology Today, 2007, 23, 186-191.	0.3	15
40	Geology and petrology of the archean high-K and high-Mg Panozero massif, Central Karelia. Petrology, 2007, 15, 459-487.	0.2	5
41	Recognising early Archaean mantle: a reappraisal. Contributions To Mineralogy and Petrology, 2007, 154, 241-252.	1.2	41
42	Chromite in the mantle section of the Oman ophiolite: A new genetic model. Island Arc, 2005, 14, 542-550.	0.5	83
43	Adakites—the key to understanding LILE depletion in granulites. Lithos, 2005, 79, 61-81.	0.6	54
44	The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin. Lithos, 2005, 79, 107-128.	0.6	81
45	Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation. Lithos, 2005, 79, ix-xii.	0.6	21
46	Metamorphic history suggested by garnet-growth chronologies in the Isua Greenstone Belt, West Greenland. Precambrian Research, 2003, 126, 181-196.	1.2	54
47	Oxygen isotopes of an Early Archaean layered ultramafic body, southern West Greenland: implications for magma source and post-intrusion history. Precambrian Research, 2003, 126, 273-288.	1.2	23
48	A Metamorphosed, Early Archaean Chromitite from West Greenland: Implications for the Genesis of Archaean Anorthositic Chromitites. Journal of Petrology, 2002, 43, 2143-2170.	1.1	62
49	The metamorphic history of the Isua Greenstone Belt, West Greenland. Geological Society Special Publication, 2002, 199, 329-350.	0.8	32
50	Complex chromite textures reveal the history of an early Archaean layered ultramafic body in West Greenland. Mineralogical Magazine, 2002, 66, 1029-1041.	0.6	17
51	Remnants of an Early Archaean (>3.75 Ga) sea-floor, hydrothermal system in the Isua Greenstone Belt. Precambrian Research, 2001, 112, 27-49.	1.2	65
52	Earth Science Education in Africa: an overview. Journal of African Earth Sciences, 1999, 28, 773-776.	0.9	1
53	Assessing quality in Earth Science Education. Journal of African Earth Sciences, 1999, 28, 903-910.	0.9	2
54	Petrology and geochemistry of metamorphosed komatiites and basalts from the Sula Mountains greenstone belt, Sierra Leone. Contributions To Mineralogy and Petrology, 1999, 134, 86-101.	1.2	28

#	Article	IF	CITATIONS
55	The Archean komatiite-related Inyala Chromitite, southern Zimbabwe. Economic Geology, 1997, 92, 98-107.	1.8	46
56	lsotopic and geochemical evidence for crust-mantle interaction during late Archaean crustal growth. Geochimica Et Cosmochimica Acta, 1997, 61, 4809-4829.	1.6	61
57	Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation. Nature, 1997, 389, 173-176.	13.7	110
58	Britain's oldest rocks. Geology Today, 1997, 13, 185-190.	0.3	0
59	Tonalite-trondhjemite-granodiorite magmatism and the genesis of Lewisian crust during the Archaean. Geological Society Special Publication, 1996, 112, 25-42.	0.8	23
60	Composition and tectonic settings of chromite deposits through time; discussion. Economic Geology, 1995, 90, 2091-2092.	1.8	20
61	The magmatic, metamorphic and tectonic evolution of the Northern Marginal Zone of the Limpopo Belt in Zimbabwe. Journal of the Geological Society, 1995, 152, 65-75.	0.9	75
62	Origin of felsic sheets in the Scourian granulites: new evidence from rare earth elements Published in Scottish Journal of Geology,Vol. 30(2), 1994, pp. 121–129 Scottish Journal of Geology, 1995, 31, 91-94.	0.1	3
63	The Triangle Shearzone, Zimbabwe, revisited: new data document an important event at 2.0 Ga in the Limpopo Belt. Precambrian Research, 1995, 70, 191-213.	1.2	117
64	Origin of felsic sheets in the Scourian granulites: new evidence from rare earth elements. Scottish Journal of Geology, 1994, 30, 121-129.	0.1	13
65	A terrane interpretation of the Archaean Limpopo Belt. Geological Magazine, 1993, 130, 755-765.	0.9	77
66	Early basic magmatism in the evolution of the northern marginal zone of the archean limpopo belt. Precambrian Research, 1992, 55, 33-45.	1.2	18
67	Another look at the constant sum problem in geochemistry. Mineralogical Magazine, 1992, 56, 469-475.	0.6	42
68	Heavy rare-earth element enrichment in Archean felsic veins. Geology, 1988, 16, 279.	2.0	5
69	Ratio correlations and major element mobility in altered basalts and komatiites ? reply to K.J. Vines. Contributions To Mineralogy and Petrology, 1987, 97, 527-528.	1.2	6
70	Early basic magmatism in the evolution of Archaean high-grade gneiss terrains: an example from the Lewisian of NW Scotland. Mineralogical Magazine, 1987, 51, 345-355.	0.6	10
71	Ratio correlations and major element mobility in altered basalts and komatiites. Contributions To Mineralogy and Petrology, 1986, 93, 89-97.	1.2	33
72	The geochemistry of mafic and ultramafic from the Archaean greenstone belts of Sierra Leone. Mineralogical Magazine, 1983, 47, 267-280.	0.6	17

#	Article	IF	CITATIONS
73	New Rb-Sr age determinations on the Archaean basement of Eastern Sierra Leone. Precambrian Research, 1982, 17, 63-72.	1.2	26
74	P-T conditions in coeval greenstone belts and granulites from the Archaean of Sierra Leone. Earth and Planetary Science Letters, 1982, 59, 177-191.	1.8	17
75	Evidence from feldspar compositions of high temperatures in granite sheets in the Scourian complex, N.W. Scotland. Mineralogical Magazine, 1982, 46, 73-76.	0.6	32
76	Contrasting high and intermediate pressures of metamorphism in the Archaean Sargur Schists of southern India. Contributions To Mineralogy and Petrology, 1981, 76, 420-429.	1.2	81
77	Garnet-pyroxene thermometry and barometry in the Scourie granulites, NW Scotland. Lithos, 1981, 14, 225-238.	0.6	35
78	Selective elemental depletion during metamorphism of archaean granulites, scourie, NW Scotland. Contributions To Mineralogy and Petrology, 1980, 72, 257-263.	1.2	104
79	An archaean granulite-grade tonalite-trondhjemite-granite suite from scourie, NW Scotland: Geochemistry and origin. Contributions To Mineralogy and Petrology, 1980, 72, 265-281.	1.2	66
80	Iron-titanium oxides as an indicator of the role of the fluid phase during the cooling of granites metamorphosed to granulite grade. Mineralogical Magazine, 1980, 43, 623-631.	0.6	32
81	Mineral reactions in a granulite facies calc-silicate rock from Scourie. Scottish Journal of Geology, 1980, 16, 153-164.	0.1	13
82	llmenite-magnetite geothermometry in trondhjemites from the Scourian complex of NW Scotland. Mineralogical Magazine, 1979, 43, 165-170.	0.6	16
83	Zonation of supracrustal relics in the Archaean of Sierra Leone, Liberia, Guinea and Ivory Coast. Nature, 1978, 272, 440-442.	13.7	28