Xiaofeng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5531922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial and temporal patterns of CO ₂ and CH ₄ fluxes in China's croplands in response to multifactor environmental changes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 222.	0.8	65
2	Improved global-scale predictions of soil carbon stocks with Millennial Version 2. Soil Biology and Biochemistry, 2022, 164, 108466.	4.2	36
3	Microbial functional genes driving the positive priming effect in forest soils along an elevation gradient. Soil Biology and Biochemistry, 2022, 165, 108498.	4.2	27
4	Global divergent trends of algal blooms detected by satellite during 1982–2018. Global Change Biology, 2022, 28, 2327-2340.	4.2	51
5	A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018. Earth System Science Data, 2022, 14, 79-94.	3.7	11
6	Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems. Scientific Reports, 2022, 12, 3986.	1.6	16
7	Wetland conversion to cropland alters the microbes along soil profiles and over seasons. Catena, 2022, 214, 106282.	2.2	8
8	Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences, 2022, 19, 2245-2262.	1.3	5
9	Forest biomass turnover time estimation in China based on spatially explicit rootÂ:Âshoot ratios. Global Ecology and Biogeography, 2022, 31, 1332-1344.	2.7	1
10	Modeling methane dynamics in three wetlands in Northeastern China by using the CLM-Microbe model. Ecosystem Health and Sustainability, 2022, 8, .	1.5	1
11	Spatial evolution of cultivated land in the Heilongjiang Province in China from 1980 to 2015. Environmental Monitoring and Assessment, 2022, 194, .	1.3	8
12	Linkage between microbial functional genes and net N mineralisation in forest soils along an elevational gradient. European Journal of Soil Science, 2022, 73, .	1.8	7
13	Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Site‣evel Applications of the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002283.	1.3	11
14	Extending a land-surface model with <i>Sphagnum</i> moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO ₂ . Biogeosciences, 2021, 18, 467-486.	1.3	17
15	Climatic versus Anthropogenic Controls of Decadal Trends (1983–2017) in Algal Blooms in Lakes and Reservoirs across China. Environmental Science & Technology, 2021, 55, 2929-2938.	4.6	65
16	Seasonality of gross ammonification and nitrification altered by precipitation in a semi-arid grassland of Northern China. Soil Biology and Biochemistry, 2021, 154, 108146.	4.2	17
17	Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity. Biogeosciences, 2021, 18, 1769-1786.	1.3	3
18	Increasing environmental filtering of diazotrophic communities with a decade of latitudinal soil transplantation. Soil Biology and Biochemistry, 2021, 154, 108119.	4.2	27

#	Article	IF	CITATIONS
19	Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study. Global Change Biology, 2021, 27, 3035-3051.	4.2	16
20	Effect of water-level fluctuations on methane and carbon dioxide dynamics in a shallow lake of Northern China: Implications for wetland restoration. Journal of Hydrology, 2021, 597, 126169.	2.3	11
21	Comparative Analysis of Two Machine Learning Algorithms in Predicting Site-Level Net Ecosystem Exchange in Major Biomes. Remote Sensing, 2021, 13, 2242.	1.8	13
22	Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 2021, 30, 2297-2311.	2.7	64
23	Strong nonâ€growing season N uptake by deciduous trees in a temperate forest: A ¹⁵ N isotopic experiment. Journal of Ecology, 2021, 109, 3752-3766.	1.9	11
24	Wetland reclamation homogenizes microbial properties along soil profiles. Geoderma, 2021, 395, 115075.	2.3	18
25	An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2019JG005468.	1.3	11
26	An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO ₂ Effects on Peatland CH ₄ Emissions. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005963.	1.3	16
27	Mapping soil microbial residence time at the global scale. Global Change Biology, 2021, 27, 6484-6497.	4.2	18
28	Divergent impacts of atmospheric water demand on gross primary productivity in three typical ecosystems in China. Agricultural and Forest Meteorology, 2021, 307, 108527.	1.9	37
29	Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study. Journal of Hydrology, 2021, 603, 127137.	2.3	4
30	A semiempirical model for horizontal distribution of surface wind speed leeward windbreaks. Agroforestry Systems, 2020, 94, 499-516.	0.9	5
31	Contrasting drought impacts on the start of phenological growing season in Northern China during 1982–2015. International Journal of Climatology, 2020, 40, 3330-3347.	1.5	13
32	Eutrophic Lake Taihu as a significant CO2 source during 2000–2015. Water Research, 2020, 170, 115331.	5.3	85
33	Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and controls. Global Ecology and Biogeography, 2020, 29, 2159-2175.	2.7	47
34	Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecology and Biogeography, 2020, 29, 1870-1886.	2.7	55
35	Population turnover promotes fungal stability in a semi-arid grassland under precipitation shifts. Journal of Plant Ecology, 2020, 13, 499-509.	1.2	8
36	Retention of early-spring nitrogen in temperate grasslands: The dynamics of ammonium and nitrate nitrogen differ. Global Ecology and Conservation, 2020, 24, e01335.	1.0	1

#	Article	IF	CITATIONS
37	The retention dynamics of N input within the soil–microbe–plant system in a temperate grassland. Geoderma, 2020, 368, 114290.	2.3	14
38	Phosphorus alleviation of nitrogenâ€suppressed methane sink in global grasslands. Ecology Letters, 2020, 23, 821-830.	3.0	18
39	Spatiotemporal pattern of gypsum blooms in the Salton Sea, California, during 2000-2018. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102090.	1.4	7
40	A Microbial Functional Groupâ€Based CH ₄ Model Integrated Into a Terrestrial Ecosystem Model: Model Structure, Siteâ€Level Evaluation, and Sensitivity Analysis. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001867.	1.3	7
41	Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100. Science of the Total Environment, 2020, 736, 139587.	3.9	28
42	Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biology and Biochemistry, 2020, 151, 108024.	4.2	70
43	Climate Change Made Major Contributions to Soil Water Storage Decline in the Southwestern US during 2003–2014. Water (Switzerland), 2019, 11, 1947.	1.2	1
44	Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma, 2019, 341, 18-25.	2.3	24
45	A Global Data Set for Economic Losses of Extreme Hydrological Events During 1960â€2014. Water Resources Research, 2019, 55, 5165-5175.	1.7	21
46	Integrating Soil Microbiology into Ecosystem Science. Advances in Environmental Microbiology, 2019, , 65-102.	0.1	1
47	Mechanistic Modeling of Microtopographic Impacts on CO ₂ and CH ₄ Fluxes in an Alaskan Tundra Ecosystem Using the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4288-4304.	1.3	22
48	Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 2019, 9, 852-857.	8.1	225
49	Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 2019, 25, 1078-1088.	4.2	248
50	Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake (Lake Taihu). Limnology and Oceanography, 2019, 64, 1070-1086.	1.6	54
51	Microbes drive global soil nitrogen mineralization and availability. , 2019, 25, 1078.		1
52	Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 2018, 27, 875-885.	2.7	55
53	The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 2018, 137, 51-71.	1.7	139
54	Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 2018, 32, 83-94.	1.7	38

#	Article	IF	CITATIONS
55	Biogeographical patterns of soil microbial community as influenced by soil characteristics and climate across Chinese forest biomes. Applied Soil Ecology, 2018, 124, 298-305.	2.1	26
56	Nitrogen acquisition strategies during the winter-spring transitional period are divergent at the species level yet convergent at the ecosystem level in temperate grasslands. Soil Biology and Biochemistry, 2018, 122, 150-159.	4.2	17
57	Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient. Biogeosciences, 2018, 15, 1217-1228.	1.3	9
58	Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytologist, 2017, 214, 1518-1526.	3.5	62
59	Global pattern and controls of soil microbial metabolic quotient. Ecological Monographs, 2017, 87, 429-441.	2.4	106
60	Multiscale evaluation of NCEP and CRUNCEP data sets at 90 large U.S. cities. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7433-7444.	1.2	7
61	Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2282-2297.	1.3	17
62	Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Science of the Total Environment, 2017, 578, 523-534.	3.9	34
63	Biogeochemical modeling of CO ₂ and CH ₄ production in anoxic Arctic soil microcosms. Biogeosciences, 2016, 13, 5021-5041.	1.3	27
64	Addressing numerical challenges in introducing a reactive transport code into a land surface model: a biogeochemical modeling proof-of-concept with CLM–PFLOTRAN 1.0. Geoscientific Model Development, 2016, 9, 927-946.	1.3	14
65	Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences, 2016, 13, 3735-3755.	1.3	102
66	Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry, 2016, 129, 255-272.	1.7	35
67	Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56.	1.9	343
68	Interdisciplinary research in climate and energy sciences. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 49-56.	1.9	18
69	Cover Image, Volume 5, Issue 1. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, i.	1.9	0
70	Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus and sulfur in terrestrial ecosystems. Scientific Reports, 2015, 5, 17445.	1.6	35
71	A microbial functional groupâ€based module for simulating methane production and consumption: Application to an incubated permafrost soil. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1315-1333.	1.3	56
72	Explicitly representing soil microbial processes in Earth system models. Global Biogeochemical Cycles, 2015, 29, 1782-1800.	1.9	286

#	Article	IF	CITATIONS
73	Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China. Biology and Fertility of Soils, 2015, 51, 815-825.	2.3	41
74	Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability, 2015, 1, 1-20.	1.5	180
75	North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Climatic Change, 2015, 129, 413-426.	1.7	112
76	Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models. Ecology Letters, 2014, 17, 547-555.	3.0	148
77	Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany, 2014, 114, 1-16.	1.4	240
78	Terrestrial carbon balance in tropical Asia: Contribution from cropland expansion and land management. Global and Planetary Change, 2013, 100, 85-98.	1.6	44
79	A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 2013, 22, 737-749.	2.7	762
80	Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century. Ecosphere, 2013, 4, 1-18.	1.0	13
81	Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 741-751.	1.3	29
82	Reviewing Global Change Research and Recommending Future Priorities. Eos, 2013, 94, 426-426.	0.1	2
83	Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters, 2012, 7, 034009.	2.2	61
84	Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems. Frontiers in Ecology and the Environment, 2012, 10, 528-536.	1.9	41
85	Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes. Ecological Applications, 2012, 22, 53-75.	1.8	93
86	Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environmental Research Letters, 2012, 7, 044020.	2.2	95
87	Net exchanges of CO2, CH4 and N2O between marshland and the atmosphere in Northeast China as influenced by multiple global environmental changes. Atmospheric Environment, 2012, 63, 77-85.	1.9	12
88	Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochemical Cycles, 2012, 26, .	1.9	51
89	Regional sources of nitrous oxide over the United States: Seasonal variation and spatial distribution. Journal of Geophysical Research, 2012, 117, .	3.3	52
90	Multifactor controls on terrestrial N ₂ O flux over North America from 1979 through 2010. Biogeosciences, 2012, 9, 1351-1366.	1.3	34

#	Article	IF	CITATIONS
91	Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States. Ecosystems, 2012, 15, 674-694.	1.6	130
92	Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Global Ecology and Biogeography, 2012, 21, 260-271.	2.7	189
93	Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 2012, 164, 89-101.	3.7	137
94	Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. Journal of Hydrology, 2012, 426-427, 39-54.	2.3	48
95	China's terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	231
96	Net exchanges of CO ₂ , CH ₄ , and N ₂ O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research, 2011, 116, .	3.3	139
97	Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. Global Ecology and Biogeography, 2011, 20, 391-406.	2.7	78
98	Modeling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: II. Phosphorus dynamics and community shift in response to hydrological and seasonal scenarios. Ecological Modelling, 2011, 222, 3942-3956.	1.2	9
99	Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China. Atmospheric Environment, 2011, 45, 1402-1406.	1.9	16
100	Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology, 2011, 4, 322-340.	1.1	79
101	The Effects of Urbanization on Net Primary Productivity in Southeastern China. Environmental Management, 2010, 46, 404-410.	1.2	60
102	Heavy metal contamination of cultivated wetland soils along a typical plateau lake from southwest China. Environmental Earth Sciences, 2010, 59, 1781-1788.	1.3	42
103	Modeling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: I. Phosphorus dynamics and cattail recovery. Ecological Modelling, 2010, 221, 1252-1266.	1.2	14
104	Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences, 2010, 7, 3637-3655.	1.3	70
105	Spatial and temporal patterns of CH ₄ and N ₂ O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences, 2010, 7, 2673-2694.	1.3	153
106	Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. Forest Ecology and Management, 2010, 259, 1311-1327.	1.4	300
107	Heavy Metal Contamination in Riverine Soils Upstream and Downstream of a Hydroelectric Dam on the Lancang River, China. Environmental Engineering Science, 2009, 26, 941-946.	0.8	25
108	Ecosystem–atmosphere exchange of CH ₄ and N ₂ O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology, 2009, 15, 692-705.	4.2	232

#	Article	IF	CITATIONS
109	Two-Decade Reconstruction of Algal Blooms in China's Lake Taihu. Environmental Science & Technology, 2009, 43, 3522-3528.	4.6	473
110	Forecasting and Assessing the Large-Scale and Long-Term Impacts of Global Environmental Change on Terrestrial Ecosystems in the United States and China. , 2009, , 235-266.		10
111	Convergence in the relationship of CO ₂ and N ₂ O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biology, 2008, 14, 1651-1660.	4.2	86
112	Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. Journal of Geophysical Research, 2007, 112, .	3.3	81
113	The variation of methane emission from freshwater marshes and response to the exogenous N in Sanjiang Plain Northeast China. Atmospheric Environment, 2007, 41, 4063-4072.	1.9	19
114	Upscaling Methane Flux From Plot Level to Eddy Covariance Tower Domains in Five Alaskan Tundra Ecosystems. Frontiers in Environmental Science, 0, 10, .	1.5	0