Bengang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5531051/publications.pdf Version: 2024-02-01

RENGANGLI

#	Article	IF	CITATIONS
1	Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129341.	4.7	7
2	Preparation of Poly(Acrylic Acid) Grafted Reduced Graphene Oxide/Polyacrylamide Composite Hydrogels with Good Electronic and Mechanical Properties by in-situ Polymerization. Journal of Macromolecular Science - Physics, 2021, 60, 589-602.	1.0	6
3	Preparation and characterization of tough and highly resilient nanocomposite hydrogels reinforced by surfaceâ€grafted cellulose nanocrystals. Journal of Applied Polymer Science, 2021, 138, 51166.	2.6	5
4	Supramolecular polyurea hydrogels with anti-swelling capacity, reversible thermochromic properties, and tunable water content and mechanical performance. Polymer, 2021, 233, 124213.	3.8	9
5	Fabrication of tough, selfâ€recoverable, and electrically conductive hydrogels by <i>in situ</i> reduction of poly(acrylic acid) grafted graphene oxide in polyacrylamide hydrogel matrix. Journal of Applied Polymer Science, 2020, 137, 48781.	2.6	16
6	Dual physically crosslinked nanocomposite hydrogels reinforced by poly(N-vinylpyrrolidone) grafted cellulose nanocrystal with high strength, toughness, and rapid self-recovery. Cellulose, 2020, 27, 9913-9925.	4.9	17
7	Microstructure and Thermal and Tensile Properties of Poly(vinyl alcohol) Nanocomposite Films Reinforced by Polyacrylamide Grafted Cellulose Nanocrystals. Journal of Macromolecular Science - Physics, 2020, 59, 223-234.	1.0	9
8	Tough and self-healable nanocomposite hydrogels from poly(acrylic acid) and polyacrylamide grafted cellulose nanocrystal crosslinked by coordination bonds and hydrogen bonds. Cellulose, 2019, 26, 6701-6711.	4.9	24
9	Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites. Materials, 2018, 11, 640.	2.9	14
10	Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid). Carbohydrate Polymers, 2018, 198, 1-8.	10.2	63
11	Preparation and Characterization of Chemically Crosslinked Polyvinyl Alcohol/Carboxylated Nanocrystalline Cellulose Nanocomposite Hydrogel Films with High Mechanical Strength. Journal of Macromolecular Science - Physics, 2016, 55, 518-531.	1.0	5
12	Preparation, drug release and cellular uptake of doxorubicin-loaded dextran-b-poly(É›-caprolactone) nanoparticles. Carbohydrate Polymers, 2013, 93, 430-437.	10.2	43
13	Fabrication and characterization of nanocrystalline cellulose films prepared under vacuum conditions. Cellulose, 2013, 20, 2667-2674.	4.9	17