Jay R Werber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5530970/publications.pdf

Version: 2024-02-01

25 5,096 20 25 papers citations h-index g-index

25 25 25 6034 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, $2016,1,.$	23.3	1,977
2	Forward osmosis: Where are we now?. Desalination, 2015, 356, 271-284.	4.0	681
3	The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. Environmental Science and Technology Letters, 2016, 3, 112-120.	3.9	527
4	The role of nanotechnology in tackling global water challenges. Nature Sustainability, 2018, 1, 166-175.	11.5	377
5	Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9793-E9801.	3.3	275
6	High-Pressure Reverse Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs. Environmental Science and Technology Letters, 2018, 5, 467-475.	3.9	213
7	Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS Nano, 2020, 14, 16446-16471.	7.3	108
8	Can batch or semi-batch processes save energy in reverse-osmosis desalination?. Desalination, 2017, 402, 109-122.	4.0	105
9	Application of membrane dewatering for algal biofuel. Algal Research, 2015, 11, 1-12.	2.4	103
10	Analysis of 2,2'-Azobis (2-Amidinopropane) Dihydrochloride Degradation and Hydrolysis in Aqueous Solutions. Journal of Pharmaceutical Sciences, 2011, 100, 3307-3315.	1.6	93
11	A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. Journal of Membrane Science, 2017, 534, 100-108.	4.1	86
12	lonization behavior of nanoporous polyamide membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30191-30200.	3.3	82
13	Monte Carlo Simulations of Framework Defects in Layered Two-Dimensional Nanomaterial Desalination Membranes: Implications for Permeability and Selectivity. Environmental Science & Eamp; Technology, 2019, 53, 6214-6224.	4.6	80
14	Permselectivity limits of biomimetic desalination membranes. Science Advances, 2018, 4, eaar8266.	4.7	72
15	Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS Nano, 2020, 14, 10894-10916.	7.3	72
16	Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes. Journal of Membrane Science, 2017, 535, 357-364.	4.1	58
17	Capillary-driven desalination in a synthetic mangrove. Science Advances, 2020, 6, eaax5253.	4.7	47
18	Loss of Phospholipid Membrane Integrity Induced by Two-Dimensional Nanomaterials. Environmental Science and Technology Letters, 2017, 4, 404-409.	3.9	39

#	Article	IF	CITATION
19	A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes. Environmental Science & Environment	4.6	36
20	Controlled grafting of polymer brush layers from porous cellulosic membranes. Journal of Membrane Science, 2020, 596, 117719.	4.1	24
21	Using a Fiber-Optic Probe for the Measurement of Volumetric Expansion of Liquids. Industrial & Samp; Engineering Chemistry Research, 2007, 46, 4330-4334.	1.8	12
22	Co-Casting Highly Selective Dual-Layer Membranes with Disordered Block Polymer Selective Layers. ACS Applied Materials & Disordered Block Polymer Selective Layers.	4.0	12
23	Tailored Mesoporous Microspheres by Polymerization-Induced Microphase Separation in Suspension. ACS Applied Polymer Materials, 2022, 4, 4219-4233.	2.0	9
24	Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor. Langmuir, 2021, 37, 490-498.	1.6	5
25	One Resin, Multiple Products: A Green Approach to Purification. ACS Symposium Series, 2013, , 87-111.	0.5	3