
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5530766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	13.7	3,542
2	Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 2013, 38, 792-804.	6.6	1,767
3	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,749
4	A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine, 2020, 26, 1033-1036.	15.2	1,678
5	Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus. Science, 2005, 310, 77-80.	6.0	1,158
6	Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems. Virology, 1998, 252, 324-330.	1.1	913
7	Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. Journal of Virology, 2008, 82, 335-345.	1.5	897
8	Influenza. Nature Reviews Disease Primers, 2018, 4, 3.	18.1	880
9	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	5.1	868
10	Programming the magnitude and persistence of antibody responses with innate immunity. Nature, 2011, 470, 543-547.	13.7	847
11	The Clobal Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	13.5	825
12	Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 2014, 505, 691-695.	13.7	773
13	Type 1 Interferons and the Virus-Host Relationship: A Lesson in Detente. Science, 2006, 312, 879-882.	6.0	765
14	Human host factors required for influenza virus replication. Nature, 2010, 463, 813-817.	13.7	755
15	Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-I. Cell Host and Microbe, 2009, 5, 439-449.	5.1	737
16	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
17	Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586, 113-119.	13.7	672
18	Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host and Microbe, 2016, 19, 882-890	5.1	658

#	Article	IF	CITATIONS
19	Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14333-14338.	3.3	562
20	H5N1 and 1918 Pandemic Influenza Virus Infection Results in Early and Excessive Infiltration of Macrophages and Neutrophils in the Lungs of Mice. PLoS Pathogens, 2008, 4, e1000115.	2.1	552
21	Induction of ICOS ⁺ CXCR3 ⁺ CXCR5 ⁺ T _H Cells Correlates with Antibody Responses to Influenza Vaccination. Science Translational Medicine, 2013, 5, 176ra32.	5.8	547
22	Activation of Interferon Regulatory Factor 3 Is Inhibited by the Influenza A Virus NS1 Protein. Journal of Virology, 2000, 74, 7989-7996.	1.5	533
23	Inhibition of Retinoic Acid-Inducible Gene I-Mediated Induction of Beta Interferon by the NS1 Protein of Influenza A Virus. Journal of Virology, 2007, 81, 514-524.	1.5	529
24	Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature, 2006, 443, 578-581.	13.7	515
25	Influenza A viruses: new research developments. Nature Reviews Microbiology, 2011, 9, 590-603.	13.6	511
26	A Two-Amino Acid Change in the Hemagglutinin of the 1918 Influenza Virus Abolishes Transmission. Science, 2007, 315, 655-659.	6.0	508
27	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	6.0	508
28	Influenza A Virus NS1 Protein Prevents Activation of NF-κB and Induction of Alpha/Beta Interferon. Journal of Virology, 2000, 74, 11566-11573.	1.5	505
29	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	13.7	475
30	From the cover: IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1371-1376.	3.3	469
31	Inhibition of Alpha/Beta Interferon Signaling by the NS4B Protein of Flaviviruses. Journal of Virology, 2005, 79, 8004-8013.	1.5	466
32	Pathogenicity of Influenza Viruses with Genes from the 1918 Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting Virus Replication and Mortality in Mice. Journal of Virology, 2005, 79, 14933-14944.	1.5	466
33	Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain. MBio, 2010, 1, .	1.8	460
34	Matrix Protein 2 of Influenza A Virus Blocks Autophagosome Fusion with Lysosomes. Cell Host and Microbe, 2009, 6, 367-380.	5.1	454
35	Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science, 2017, 356, 175-180.	6.0	453
36	The Ebola virus VP35 protein functions as a type I IFN antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12289-12294.	3.3	442

#	Article	IF	CITATIONS
37	The Ebola Virus VP35 Protein Inhibits Activation of Interferon Regulatory Factor 3. Journal of Virology, 2003, 77, 7945-7956.	1.5	432
38	Human intracellular ISG15 prevents interferon- $\hat{l}\pm/\hat{l}^2$ over-amplification and auto-inflammation. Nature, 2015, 517, 89-93.	13.7	432
39	SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28344-28354.	3.3	421
40	Multiple Anti-Interferon Actions of the Influenza A Virus NS1 Protein. Journal of Virology, 2007, 81, 7011-7021.	1.5	404
41	Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015, 348, 448-453.	6.0	389
42	Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1350-1355.	3.3	378
43	Transcription Elongation Can Affect Genome 3D Structure. Cell, 2018, 174, 1522-1536.e22.	13.5	369
44	Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11531-11536.	3.3	363
45	NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. Journal of Virology, 2009, 83, 5408-5418.	1.5	358
46	Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16303-16308.	3.3	357
47	A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity. Journal of Virology, 2005, 79, 11533-11536.	1.5	356
48	Shedding of Viable SARS-CoV-2 after Immunosuppressive Therapy for Cancer. New England Journal of Medicine, 2020, 383, 2586-2588.	13.9	356
49	Introductions and early spread of SARS-CoV-2 in the New York City area. Science, 2020, 369, 297-301.	6.0	356
50	Newcastle Disease Virus (NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V, W, and C Proteins. Journal of Virology, 2003, 77, 1501-1511.	1.5	348
51	SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe, The, 2021, 2, e283-e284.	3.4	344
52	The intracellular sites of early replication and budding of SARS-coronavirus. Virology, 2007, 361, 304-315.	1.1	342
53	Ten Strategies of Interferon Evasion by Viruses. Cell Host and Microbe, 2017, 22, 176-184.	5.1	341
54	Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: The role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10736-10741.	3.3	339

#	Article	IF	CITATIONS
55	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	6.0	336
56	Influenza Virus NS1 Protein Counteracts PKR-Mediated Inhibition of Replication. Journal of Virology, 2000, 74, 6203-6206.	1.5	328
57	Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3455-3460.	3.3	328
58	The guinea pig as a transmission model for human influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9988-9992.	3.3	317
59	Multiple Functions of the IKK-Related Kinase IKKÂ in Interferon-Mediated Antiviral Immunity. Science, 2007, 315, 1274-1278.	6.0	309
60	Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1. PLoS Pathogens, 2005, 1, e4.	2.1	306
61	Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses. Cell Host and Microbe, 2007, 2, 404-416.	5.1	304
62	Inhibition of Interferon-Mediated Antiviral Responses by Influenza A Viruses and Other Negative-Strand RNA Viruses. Virology, 2001, 279, 375-384.	1.1	300
63	Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology, 2017, 2, 17037.	5.9	292
64	Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4309-4314.	3.3	288
65	MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Reports, 2021, 34, 108628.	2.9	287
66	TRIMmunity: The Roles of the TRIM E3-Ubiquitin Ligase Family in Innate Antiviral Immunity. Journal of Molecular Biology, 2014, 426, 1265-1284.	2.0	285
67	Inhibition of Beta Interferon Induction by Severe Acute Respiratory Syndrome Coronavirus Suggests a Two-Step Model for Activation of Interferon Regulatory Factor 3. Journal of Virology, 2005, 79, 2079-2086.	1.5	281
68	Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18979-18984.	3.3	273
69	Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 2012, 8, e1003059.	2.1	273
70	Type I IFN Modulates Innate and Specific Antiviral Immunity. Journal of Immunology, 2000, 164, 4220-4228.	0.4	270
71	Influenza Research Database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and Other Respiratory Viruses, 2012, 6, 404-416.	1.5	270
72	Suppression of the antiviral response by an influenza histone mimic. Nature, 2012, 483, 428-433.	13.7	269

#	Article	IF	CITATIONS
73	The E3-Ligase TRIM Family of Proteins Regulates Signaling Pathways Triggered by Innate Immune Pattern-Recognition Receptors. Immunity, 2013, 38, 384-398.	6.6	268
74	Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway. PLoS Pathogens, 2011, 7, e1001329.	2.1	267
75	Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2746-2751.	3.3	266
76	A Recombinant Influenza A Virus Expressing anRNA-Binding-Defective NS1 Protein Induces High Levels of BetaInterferon and Is Attenuated inMice. Journal of Virology, 2003, 77, 13257-13266.	1.5	260
77	Influenza Virus Evades Innate and Adaptive Immunity via the NS1 Protein. Journal of Virology, 2006, 80, 6295-6304.	1.5	260
78	After the pandemic: perspectives on the future trajectory of COVID-19. Nature, 2021, 596, 495-504.	13.7	260
79	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	13.5	252
80	Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371, 926-931.	6.0	247
81	Human Responses to Influenza Vaccination Show Seroconversion Signatures and Convergent Antibody Rearrangements. Cell Host and Microbe, 2014, 16, 105-114.	5.1	246
82	Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2573-2578.	3.3	244
83	Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. ELife, 2016, 5, .	2.8	237
84	Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature, 2022, 602, 487-495.	13.7	237
85	Mutations in the NS1 Protein of Swine Influenza Virus Impair Anti-Interferon Activity and Confer Attenuation in Pigs. Journal of Virology, 2005, 79, 7535-7543.	1.5	222
86	Viral tricks to grid-lock the type I interferon system. Current Opinion in Microbiology, 2010, 13, 508-516.	2.3	221
87	Recombinant Newcastle Disease Virus as a Vaccine Vector. Journal of Virology, 2001, 75, 11868-11873.	1.5	220
88	Attenuation of Equine Influenza Viruses through Truncations of the NS1 Protein. Journal of Virology, 2005, 79, 8431-8439.	1.5	220
89	Inhibition of the Type I Interferon Response by the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus. Journal of Virology, 2006, 80, 9192-9199.	1.5	218
90	Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. Journal of Clinical Investigation, 2012, 122, 4037-4047.	3.9	218

#	Article	IF	CITATIONS
91	Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza. Journal of Virology, 2009, 83, 1742-1753.	1.5	217
92	Influenza A Virus Transmission Bottlenecks Are Defined by Infection Route and Recipient Host. Cell Host and Microbe, 2014, 16, 691-700.	5.1	215
93	SARS-CoV-2 infection, disease and transmission in domestic cats. Emerging Microbes and Infections, 2020, 9, 2322-2332.	3.0	215
94	Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nature Communications, 2021, 12, 6055.	5.8	215
95	Newcastle Disease Virus V Protein Is a Determinant of Host Range Restriction. Journal of Virology, 2003, 77, 9522-9532.	1.5	208
96	Engineered viral vaccine constructs with dual specificity: Avian influenza and Newcastle disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8203-8208.	3.3	207
97	IRF3 and IRF7 Phosphorylation in Virus-infected Cells Does Not Require Double-stranded RNA-dependent Protein Kinase R or IήB Kinase but Is Blocked by Vaccinia Virus E3L Protein. Journal of Biological Chemistry, 2001, 276, 8951-8957.	1.6	206
98	Nipah Virus V and W Proteins Have a Common STAT1-Binding Domain yet Inhibit STAT1 Activation from the Cytoplasmic and Nuclear Compartments, Respectively. Journal of Virology, 2004, 78, 5633-5641.	1.5	206
99	The Influenza Virus Protein PB1-F2 Inhibits the Induction of Type I Interferon at the Level of the MAVS Adaptor Protein. PLoS Pathogens, 2011, 7, e1002067.	2.1	206
100	Transcriptional role of p53 in interferon-mediated antiviral immunity. Journal of Experimental Medicine, 2008, 205, 1929-1938.	4.2	205
101	A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature Medicine, 2021, 27, 106-114.	15.2	204
102	Induction and evasion of type I interferon responses by influenza viruses. Virus Research, 2011, 162, 12-18.	1.1	202
103	Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3366-3371.	3.3	201
104	Identification of Cellular Interaction Partners of the Influenza Virus Ribonucleoprotein Complex and Polymerase Complex Using Proteomic-Based Approaches. Journal of Proteome Research, 2007, 6, 672-682.	1.8	200
105	Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerging Microbes and Infections, 2014, 3, 1-7.	3.0	200
106	A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathogens, 2017, 13, e1006258.	2.1	200
107	Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 2010, 84, 11802-11813.	1.5	197
108	Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13133-13138.	3.3	197

#	Article	IF	CITATIONS
109	Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature, 2021, 599, 283-289.	13.7	195
110	An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host and Microbe, 2018, 23, 672-685.e6.	5.1	192
111	The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signaling. Journal of Virology, 2010, 84, 3503-3515.	1.5	189
112	Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling. PLoS Pathogens, 2013, 9, e1003265.	2.1	188
113	Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11525-11530.	3.3	186
114	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
115	Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Modern Pathology, 2021, 34, 1456-1467.	2.9	184
116	Transmission of Influenza Virus via Aerosols and Fomites in the Guinea Pig Model. Journal of Infectious Diseases, 2009, 199, 858-865.	1.9	179
117	Virulence determinants of pandemic influenza viruses. Journal of Clinical Investigation, 2011, 121, 6-13.	3.9	179
118	Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6806-6811.	3.3	178
119	A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell, 2019, 177, 1136-1152.e18.	13.5	177
120	Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses. Journal of Virology, 2013, 87, 10435-10446.	1.5	174
121	Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3166-3171.	3.3	171
122	Differential Inhibition of Type I Interferon Induction by Arenavirus Nucleoproteins. Journal of Virology, 2007, 81, 12696-12703.	1.5	170
123	Protection of Mice against Lethal Challenge with 2009 H1N1 Influenza A Virus by 1918-Like and Classical Swine H1N1 Based Vaccines. PLoS Pathogens, 2010, 6, e1000745.	2.1	166
124	An In Vitro Microneutralization Assay for SARS oVâ€2 Serology and Drug Screening. Current Protocols in Microbiology, 2020, 58, e108.	6.5	165
125	The Influenza A Virus NS1 Protein Inhibits Activation of Jun N-Terminal Kinase and AP-1 Transcription Factors. Journal of Virology, 2002, 76, 11166-11171.	1.5	164
126	Vaccination of Pigs against Swine Influenza Viruses by Using an NS1-Truncated Modified Live-Virus Vaccine. Journal of Virology, 2006, 80, 11009-11018.	1.5	164

#	Article	IF	CITATIONS
127	Global Host Immune Response: Pathogenesis and Transcriptional Profiling of Type A Influenza Viruses Expressing the Hemagglutinin and Neuraminidase Genes from the 1918 Pandemic Virus. Journal of Virology, 2004, 78, 9499-9511.	1.5	162
128	The <i>Mx1</i> Gene Protects Mice against the Pandemic 1918 and Highly Lethal Human H5N1 Influenza Viruses. Journal of Virology, 2007, 81, 10818-10821.	1.5	161
129	PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1. Cell, 2015, 161, 1293-1305.	13.5	159
130	Spatial-Temporal Lineage Restrictions of Embryonic p63+ Progenitors Establish Distinct Stem Cell Pools in Adult Airways. Developmental Cell, 2018, 44, 752-761.e4.	3.1	158
131	Incoming RNA Virus Nucleocapsids Containing a 5′-Triphosphorylated Genome Activate RIG-I and Antiviral Signaling. Cell Host and Microbe, 2013, 13, 336-346.	5.1	157
132	Mouse STAT2 Restricts Early Dengue Virus Replication. Cell Host and Microbe, 2010, 8, 410-421.	5.1	156
133	ISG15 deficiency and increased viral resistance in humans but not mice. Nature Communications, 2016, 7, 11496.	5.8	156
134	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	4.7	154
135	Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerging Microbes and Infections, 2020, 9, 2433-2445.	3.0	153
136	Inefficient Control of Host Gene Expression by the 2009 Pandemic H1N1 Influenza A Virus NS1 Protein. Journal of Virology, 2010, 84, 6909-6922.	1.5	152
137	Immunological imprinting of the antibody response in COVID-19 patients. Nature Communications, 2021, 12, 3781.	5.8	149
138	Innate immune evasion strategies of influenza viruses. Future Microbiology, 2010, 5, 23-41.	1.0	148
139	Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science, 2021, 373, 541-547.	6.0	148
140	Use of Reverse Genetics to Enhance the Oncolytic Properties of Newcastle Disease Virus. Cancer Research, 2007, 67, 8285-8292.	0.4	147
141	Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nature Communications, 2013, 4, 2854.	5.8	146
142	Host- and Strain-Specific Regulation of Influenza Virus Polymerase Activity by Interacting Cellular Proteins. MBio, 2011, 2, .	1.8	145
143	Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3064-3069.	3.3	140
144	ICOS+PD-1+CXCR3+ T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination. Scientific Reports, 2016, 6, 26494.	1.6	139

#	Article	IF	CITATIONS
145	H3N2 Influenza Virus Infection Induces Broadly Reactive Hemagglutinin Stalk Antibodies in Humans and Mice. Journal of Virology, 2013, 87, 4728-4737.	1.5	138
146	Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host and Microbe, 2022, 30, 373-387.e7.	5.1	138
147	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	4.5	137
148	αâ€Defensin Inhibits Influenza Virus Replication by Cellâ€Mediated Mechanism(s). Journal of Infectious Diseases, 2007, 196, 835-843.	1.9	135
149	Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response. Immunity, 2014, 40, 880-895.	6.6	135
150	PB1-F2 Expression by the 2009 Pandemic H1N1 Influenza Virus Has Minimal Impact on Virulence in Animal Models. Journal of Virology, 2010, 84, 4442-4450.	1.5	134
151	Severe influenza pneumonitis in children with inherited TLR3 deficiency. Journal of Experimental Medicine, 2019, 216, 2038-2056.	4.2	134
152	Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352, aad7993.	6.0	132
153	Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins. Nature Immunology, 2017, 18, 464-473.	7.0	131
154	Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8 + TÂCell Responses. Cell Reports, 2016, 15, 1076-1087.	2.9	130
155	Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets. Journal of Virology, 2014, 88, 3432-3442.	1.5	128
156	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	3.1	128
157	Negative-strand RNA viruses: genetic engineering and applications Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11354-11358.	3.3	127
158	Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13849-13854.	3.3	127
159	An Unconventional NLS is Critical for the Nuclear Import of the Influenza A Virus Nucleoprotein and Ribonucleoprotein. Traffic, 2005, 6, 205-213.	1.3	127
160	Cellular Localization and Antigenic Characterization of Crimean-Congo Hemorrhagic Fever Virus Glycoproteins. Journal of Virology, 2005, 79, 6152-6161.	1.5	127
161	The M Segment of the 2009 New Pandemic H1N1 Influenza Virus Is Critical for Its High Transmission Efficiency in the Guinea Pig Model. Journal of Virology, 2011, 85, 11235-11241.	1.5	127
162	The Early Interferon Response to Rotavirus Is Regulated by PKR and Depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. Journal of Virology, 2011, 85, 3717-3732.	1.5	126

#	Article	IF	CITATIONS
163	The Interferon Signaling Antagonist Function of Yellow Fever Virus NS5 Protein Is Activated by Type I Interferon. Cell Host and Microbe, 2014, 16, 314-327.	5.1	126
164	Influenza A Virus Strains Differ in Sensitivity to the Antiviral Action of Mx-GTPase. Journal of Virology, 2008, 82, 3624-3631.	1.5	123
165	Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine. Vaccine, 2007, 25, 7999-8009.	1.7	122
166	VIRUSES AND THE TYPE I INTERFERON ANTIVIRAL SYSTEM: INDUCTION AND EVASION. International Reviews of Immunology, 2002, 21, 305-337.	1.5	119
167	Peptide-Mediated Interference with Influenza A Virus Polymerase. Journal of Virology, 2007, 81, 7801-7804.	1.5	119
168	NF-κB RelA Subunit Is Crucial for Early IFN-β Expression and Resistance to RNA Virus Replication. Journal of Immunology, 2010, 185, 1720-1729.	0.4	119
169	Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species. PLoS Pathogens, 2011, 7, e1002186.	2.1	119
170	Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids, 2010, 38, 1283-1299.	1.2	118
171	Transmission of Pandemic H1N1 Influenza Virus and Impact of Prior Exposure to Seasonal Strains or Interferon Treatment. Journal of Virology, 2010, 84, 21-26.	1.5	118
172	Influenza Virus Adaptation PB2-627K Modulates Nucleocapsid Inhibition by the Pathogen Sensor RIG-I. Cell Host and Microbe, 2015, 17, 309-319.	5.1	118
173	Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology, 2021, 160, 2435-2450.e34.	0.6	118
174	Mice Lacking the ISG15 E1 Enzyme UbE1L Demonstrate Increased Susceptibility to both Mouse-Adapted and Non-Mouse-Adapted Influenza B Virus Infection. Journal of Virology, 2009, 83, 1147-1151.	1.5	117
175	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
176	Reverse genetics studies on the filamentous morphology of influenza A virus. Journal of General Virology, 2003, 84, 517-527.	1.3	116
177	Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity. Journal of Virology, 2010, 84, 3220-3229.	1.5	116
178	The NS1 Protein: A Multitasking Virulence Factor. Current Topics in Microbiology and Immunology, 2014, 386, 73-107.	0.7	115
179	Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. Journal of Clinical Investigation, 2015, 125, 1255-1268.	3.9	115
180	Mechanisms of inhibition of the host interferon α/β-mediated antiviral responses by viruses. Microbes and Infection, 2002, 4, 647-655.	1.0	114

#	Article	IF	CITATIONS
181	Live Attenuated Influenza Vaccine Provides Superior Protection from Heterologous Infection in Pigs with Maternal Antibodies without Inducing Vaccine-Associated Enhanced Respiratory Disease. Journal of Virology, 2012, 86, 10597-10605.	1.5	114
182	ATPaseâ€driven oligomerization of RIGâ€I on RNA allows optimal activation of typeâ€I interferon. EMBO Reports, 2013, 14, 780-787.	2.0	114
183	Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics. Journal of Virology, 2006, 80, 10813-10828.	1.5	113
184	Protection against Respiratory Syncytial Virus by a Recombinant Newcastle Disease Virus Vector. Journal of Virology, 2006, 80, 1130-1139.	1.5	113
185	A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. Npj Vaccines, 2017, 2, 26.	2.9	113
186	Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus. Journal of Virology, 2009, 83, 11330-11340.	1.5	112
187	In Vivo Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells. PLoS Pathogens, 2014, 10, e1004081.	2.1	111
188	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	6.6	110
189	Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Scientific Reports, 2017, 7, 40360.	1.6	110
190	Maternal Influenza Viral Infection Causes Schizophrenia-Like Alterations of 5-HT _{2A} and mGlu ₂ Receptors in the Adult Offspring. Journal of Neuroscience, 2011, 31, 1863-1872.	1.7	109
191	TRIM25 in the Regulation of the Antiviral Innate Immunity. Frontiers in Immunology, 2017, 8, 1187.	2.2	109
192	Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling. Journal of Virology, 2012, 86, 773-785.	1.5	108
193	InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine and Growth Factor Reviews, 2014, 25, 563-576.	3.2	108
194	Glycosylations in the Globular Head of the Hemagglutinin Protein Modulate the Virulence and Antigenic Properties of the H1N1 Influenza Viruses. Science Translational Medicine, 2013, 5, 187ra70.	5.8	107
195	A Sendai Virus-Derived RNA Agonist of RIG-I as a Virus Vaccine Adjuvant. Journal of Virology, 2013, 87, 1290-1300.	1.5	107
196	Influenza-Infected Neutrophils within the Infected Lungs Act as Antigen Presenting Cells for Anti-Viral CD8+ T Cells. PLoS ONE, 2012, 7, e46581.	1.1	106
197	Effects of Influenza A Virus NS1 Protein on Protein Expression: the NS1 Protein Enhances Translation and Is Not Required for Shutoff of Host Protein Synthesis. Journal of Virology, 2002, 76, 1206-1212.	1.5	105
198	MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection. PLoS Pathogens, 2018, 14, e1006838.	2.1	104

#	Article	IF	CITATIONS
199	Variations in the Hemagglutinin of the 2009 H1N1 Pandemic Virus: Potential for Strains with Altered Virulence Phenotype?. PLoS Pathogens, 2010, 6, e1001145.	2.1	103
200	Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infectious Diseases, The, 2020, 20, 80-91.	4.6	103
201	Influenza B Virus NS1-Truncated Mutants: Live-Attenuated Vaccine Approach. Journal of Virology, 2008, 82, 10580-10590.	1.5	102
202	Transcription Factor Redundancy Ensures Induction of the Antiviral State. Journal of Biological Chemistry, 2010, 285, 42013-42022.	1.6	102
203	Hijacking of RIG-I Signaling Proteins into Virus-Induced Cytoplasmic Structures Correlates with the Inhibition of Type I Interferon Responses. Journal of Virology, 2014, 88, 4572-4585.	1.5	102
204	Syncytia Induction Enhances the Oncolytic Potential of Vesicular Stomatitis Virus in Virotherapy for Cancer. Cancer Research, 2004, 64, 3265-3270.	0.4	101
205	Generation of Recombinant Influenza Virus from Plasmid DNA. Journal of Visualized Experiments, 2010, , .	0.2	101
206	Constitutive resistance to viral infection in human CD141 ⁺ dendritic cells. Science Immunology, 2017, 2, .	5.6	99
207	Type I Interferon Induction Pathway, but Not Released Interferon, Participates in the Maturation of Dendritic Cells Induced by Negativeâ€5trand RNA Viruses. Journal of Infectious Diseases, 2003, 187, 1126-1136.	1.9	98
208	Detection of Respiratory Viruses and Subtype Identification of Influenza A Viruses by GreeneChipResp Oligonucleotide Microarray. Journal of Clinical Microbiology, 2007, 45, 2359-2364.	1.8	97
209	Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. Journal of Virology, 2021, 95, e0040221.	1.5	97
210	Characterization ofin VivoPrimary and Secondary CD8+T Cell Responses Induced by Recombinant Influenza and Vaccinia Viruses. Cellular Immunology, 1996, 173, 96-107.	1.4	96
211	Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-β Production. Journal of Biological Chemistry, 2010, 285, 20252-20261.	1.6	96
212	Functional Replacement of the Carboxy-Terminal Two-Thirds of the Influenza A Virus NS1 Protein with Short Heterologous Dimerization Domains. Journal of Virology, 2002, 76, 12951-12962.	1.5	94
213	The NS1 Protein of a Human Influenza Virus Inhibits Type I Interferon Production and the Induction of Antiviral Responses in Primary Human Dendritic and Respiratory Epithelial Cells. Journal of Virology, 2009, 83, 6849-6862.	1.5	94
214	Hemagglutinin-Pseudotyped Green Fluorescent Protein-Expressing Influenza Viruses for the Detection of Influenza Virus Neutralizing Antibodies. Journal of Virology, 2010, 84, 2157-2163.	1.5	94
215	Oseltamivir-Resistant Variants of the 2009 Pandemic H1N1 Influenza A Virus Are Not Attenuated in the Guinea Pig and Ferret Transmission Models. Journal of Virology, 2010, 84, 11219-11226.	1.5	94
216	Nonconserved Nucleotides at the 3′ and 5′ Ends of an Influenza A Virus RNA Play an Important Role in Viral RNA Replication. Virology, 1996, 217, 242-251.	1.1	92

#	Article	IF	CITATIONS
217	HERC6 Is the Main E3 Ligase for Global ISG15 Conjugation in Mouse Cells. PLoS ONE, 2012, 7, e29870.	1.1	92
218	Integration of Clinical Data, Pathology, and cDNA Microarrays in Influenza Virus-Infected Pigtailed Macaques (Macaca nemestrina). Journal of Virology, 2004, 78, 10420-10432.	1.5	91
219	MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature, 2019, 567, 109-112.	13.7	91
220	Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2222-2227.	3.3	90
221	Influenza vaccines: present and future. Journal of Clinical Investigation, 2002, 110, 9-13.	3.9	90
222	Genetic Manipulation of Negative-Strand RNA Virus Genomes. Annual Review of Microbiology, 1993, 47, 765-790.	2.9	88
223	Structure of IRF-3 Bound to the PRDIII-I Regulatory Element of the Human Interferon-β Enhancer. Molecular Cell, 2007, 26, 703-716.	4.5	88
224	Hantaan Virus Nucleocapsid Protein Binds to Importin α Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B. Journal of Virology, 2009, 83, 1271-1279.	1.5	88
225	Engineered RNA viral synthesis of microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11519-11524.	3.3	86
226	Structure of the NS3 helicase from Zika virus. Nature Structural and Molecular Biology, 2016, 23, 752-754.	3.6	86
227	Heterologous HA DNA vaccine prime—inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine, 2008, 26, 3626-3633.	1.7	85
228	Complete-Proteome Mapping of Human Influenza A Adaptive Mutations: Implications for Human Transmissibility of Zoonotic Strains. PLoS ONE, 2010, 5, e9025.	1.1	85
229	Dengue Virus Immunity Increases Zika Virus-Induced Damage during Pregnancy. Immunity, 2019, 50, 751-762.e5.	6.6	85
230	Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Research, 2003, 63, 3605-11.	0.4	85
231	Enhancement of Oncolytic Properties of Recombinant Newcastle Disease Virus Through Antagonism of Cellular Innate Immune Responses. Molecular Therapy, 2009, 17, 697-706.	3.7	84
232	Hemagglutinin (HA) Proteins from H1 and H3 Serotypes of Influenza A Viruses Require Different Antigen Designs for the Induction of Optimal Protective Antibody Responses as Studied by Codon-Optimized HA DNA Vaccines. Journal of Virology, 2006, 80, 11628-11637.	1.5	82
233	Inhibition of the Ubiquitin-Proteasome System Affects Influenza A Virus Infection at a Postfusion Step. Journal of Virology, 2010, 84, 9625-9631.	1.5	82
234	The DBA.2 Mouse Is Susceptible to Disease following Infection with a Broad, but Limited, Range of Influenza A and B Viruses. Journal of Virology, 2011, 85, 12825-12829.	1.5	82

#	Article	IF	CITATIONS
235	Recombinant viruses expressing a human malaria antigen can elicit potentially protective immune CD8+ responses in mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3954-3959.	3.3	81
236	Inhibition of the Alpha/Beta Interferon Response by Mouse Hepatitis Virus at Multiple Levels. Journal of Virology, 2007, 81, 7189-7199.	1.5	81
237	Evasion of innate and adaptive immune responses by influenza A virus. Cellular Microbiology, 2010, 12, 873-880.	1.1	81
238	The N- and C-Terminal Domains of the NS1 Protein of Influenza B Virus Can Independently Inhibit IRF-3 and Beta Interferon Promoter Activation. Journal of Virology, 2004, 78, 11574-11582.	1.5	80
239	An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nature Communications, 2014, 5, 4448.	5.8	80
240	TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021, 184, 2618-2632.e17.	13.5	80
241	Attenuated Influenza Virus Vaccines with Modified NS1 Proteins. Current Topics in Microbiology and Immunology, 2009, 333, 177-195.	0.7	80
242	Recombinant Newcastle Disease Virus as a Vaccine Vector for Cancer Therapy. Molecular Therapy, 2008, 16, 1883-1890.	3.7	79
243	Blocking Interhost Transmission of Influenza Virus by Vaccination in the Guinea Pig Model. Journal of Virology, 2009, 83, 2803-2818.	1.5	79
244	Optimization of Human Immunodeficiency Virus Gag Expression by Newcastle Disease Virus Vectors for the Induction of Potent Immune Responses. Journal of Virology, 2009, 83, 584-597.	1.5	79
245	Functional Genomic and Serological Analysis of the Protective Immune Response Resulting from Vaccination of Macaques with an NS1-Truncated Influenza Virus. Journal of Virology, 2007, 81, 11817-11827.	1.5	78
246	Cellular RNA Binding Proteins NS1-BP and hnRNP K Regulate Influenza A Virus RNA Splicing. PLoS Pathogens, 2013, 9, e1003460.	2.1	78
247	Structures of NS5 Methyltransferase from Zika Virus. Cell Reports, 2016, 16, 3097-3102.	2.9	78
248	Influenza virus mRNA trafficking through host nuclear speckles. Nature Microbiology, 2016, 1, 16069.	5.9	78
249	N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Reports, 2019, 27, 3284-3294.e6.	2.9	78
250	Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature, 2022, 602, 314-320.	13.7	78
251	p53 Serves as a Host Antiviral Factor That Enhances Innate and Adaptive Immune Responses to Influenza A Virus. Journal of Immunology, 2011, 187, 6428-6436.	0.4	77
252	MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nature Biotechnology, 2013, 31, 844-847.	9.4	77

#	Article	IF	CITATIONS
253	Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine, 2020, 62, 103132.	2.7	77
254	Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerging Microbes and Infections, 2022, 11, 95-112.	3.0	77
255	Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Research, 2017, 137, 165-172.	1.9	75
256	Is It Possible to Develop a "Universal―Influenza Virus Vaccine?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028845.	2.3	75
257	ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. ELife, 2015, 4, .	2.8	75
258	Prime-Boost Immunization Schedules Based on Influenza Virus and Vaccinia Virus Vectors Potentiate Cellular Immune Responses against Human Immunodeficiency Virus Env Protein Systemically and in the Genitorectal Draining Lymph Nodes. Journal of Virology, 2003, 77, 7048-7057.	1.5	74
259	Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15987-15991.	3.3	74
260	Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathogens, 2017, 13, e1006635.	2.1	74
261	A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerging Microbes and Infections, 2021, 10, 376-383.	3.0	74
262	Recombinant IgA Is Sufficient To Prevent Influenza Virus Transmission in Guinea Pigs. Journal of Virology, 2013, 87, 7793-7804.	1.5	73
263	Species-Specific Antagonism of Host ISGylation by the Influenza B Virus NS1 Protein. Journal of Virology, 2010, 84, 5423-5430.	1.5	72
264	Microbiome disturbance and resilience dynamics of the upper respiratory tract during influenza A virus infection. Nature Communications, 2020, 11, 2537.	5.8	72
265	BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence. Nucleic Acids Research, 2008, 36, D497-D503.	6.5	71
266	Exponential Enhancement of Oncolytic Vesicular Stomatitis Virus Potency by Vector-mediated Suppression of Inflammatory Responses In Vivo. Molecular Therapy, 2008, 16, 146-153.	3.7	70
267	Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Therapy, 2009, 16, 796-804.	2.3	70
268	Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor. Nature Chemical Biology, 2011, 7, 712-719.	3.9	70
269	Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion. MBio, 2017, 8, .	1.8	70
270	Differences in Antibody Responses Between Trivalent Inactivated Influenza Vaccine and Live Attenuated Influenza Vaccine Correlate With the Kinetics and Magnitude of Interferon Signaling in Children. Journal of Infectious Diseases, 2014, 210, 224-233.	1.9	69

#	Article	IF	CITATIONS
271	The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. Journal of Experimental Medicine, 2016, 213, 2167-2185.	4.2	69
272	Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets. Journal of Virology, 2016, 90, 3268-3273.	1.5	69
273	Broadly Cross-Reactive, Nonneutralizing Antibodies against Influenza B Virus Hemagglutinin Demonstrate Effector Function-Dependent Protection against Lethal Viral Challenge in Mice. Journal of Virology, 2019, 93, .	1.5	69
274	Human Genome-Wide RNAi Screen Identifies an Essential Role for Inositol Pyrophosphates in Type-I Interferon Response. PLoS Pathogens, 2014, 10, e1003981.	2.1	68
275	Influenza vaccines: present and future. Journal of Clinical Investigation, 2002, 110, 9-13.	3.9	68
276	rVSV(MΔ51)-M3 Is an Effective and Safe Oncolytic Virus for Cancer Therapy. Human Gene Therapy, 2008, 19, 635-647.	1.4	67
277	The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathogens, 2019, 15, e1007634.	2.1	67
278	Hematopoietic-specific targeting of influenza A virus reveals replication requirements for induction of antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12117-12122.	3.3	66
279	Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene. International Immunology, 1997, 9, 1641-1650.	1.8	65
280	Antiviral Response in Pandemic Influenza Viruses. Emerging Infectious Diseases, 2006, 12, 44-47.	2.0	65
281	H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids. Journal of General Virology, 2013, 94, 2417-2423.	1.3	65
282	A Single Amino Acid Substitution in the Novel H7N9 Influenza A Virus NS1 Protein Increases CPSF30 Binding and Virulence. Journal of Virology, 2014, 88, 12146-12151.	1.5	65
283	Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. Journal of Virology, 2019, 93, .	1.5	65
284	DNA Immunization of Newborn Mice with a Plasmid-Expressing Nucleoprotein of Influenza Virus. Viral Immunology, 1996, 9, 207-210.	0.6	64
285	Avian influenza A H10N8—a virus on the verge?. Lancet, The, 2014, 383, 676-677.	6.3	64
286	COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Frontiers in Pharmacology, 2021, 12, 633680.	1.6	64
287	The functional impairment of natural killer cells during influenza virus infection. Immunology and Cell Biology, 2009, 87, 579-589.	1.0	63
288	The NS1 Protein of the 1918 Pandemic Influenza Virus Blocks Host Interferon and Lipid Metabolism Pathways. Journal of Virology, 2009, 83, 10557-10570.	1.5	63

#	Article	IF	CITATIONS
289	An enzymatic virus-like particle assay for sensitive detection of virus entry. Journal of Virological Methods, 2010, 163, 336-343.	1.0	62
290	Glycine 184 in Nonstructural Protein NS1 Determines the Virulence of Influenza A Virus Strain PR8 without Affecting the Host Interferon Response. Journal of Virology, 2010, 84, 12761-12770.	1.5	62
291	Negative regulation of NF- $\hat{I}^{e}B$ activity by brain-specific TRIpartite Motif protein 9. Nature Communications, 2014, 5, 4820.	5.8	62
292	Introduction of Two Prolines and Removal of the Polybasic Cleavage Site Lead to Higher Efficacy of a Recombinant Spike-Based SARS-CoV-2 Vaccine in the Mouse Model. MBio, 2021, 12, .	1.8	62
293	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
294	H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. Journal of Clinical Investigation, 2016, 126, 1482-1494.	3.9	62
295	Influenza B and C Virus NEP (NS2) Proteins Possess Nuclear Export Activities. Journal of Virology, 2001, 75, 7375-7383.	1.5	61
296	Thogoto virus ML protein suppresses IRF3 function. Virology, 2005, 331, 63-72.	1.1	61
297	Lack of Essential Role of NF-κB p50, RelA, and cRel Subunits in Virus-Induced Type 1 IFN Expression. Journal of Immunology, 2007, 178, 6770-6776.	0.4	61
298	Differential recognition of viral RNA by RIG-I. Virulence, 2011, 2, 166-169.	1.8	61
299	Current Status of COVIDâ€19 (Pre)Clinical Vaccine Development. Angewandte Chemie - International Edition, 2020, 59, 18885-18897.	7.2	61
300	Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity, 2020, 53, 1230-1244.e5.	6.6	61
301	A Newcastle Disease Virus (NDV) Expressing a Membrane-Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. Vaccines, 2020, 8, 771.	2.1	61
302	Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease severity. Cell Reports Medicine, 2021, 2, 100369.	3.3	61
303	A Newcastle disease virus expressing a stabilized spike protein of SARS-CoV-2 induces protective immune responses. Nature Communications, 2021, 12, 6197.	5.8	61
304	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	2.1	61
305	Protection against Lethal Influenza with a Viral Mimic. Journal of Virology, 2013, 87, 8591-8605.	1.5	60
306	Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling. Journal of Virology, 2018, 92, .	1.5	60

#	Article	IF	CITATIONS
307	Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nature Communications, 2018, 9, 2407.	5.8	60
308	Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Therapy, 2009, 16, 266-278.	2.2	59
309	One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine, 2014, 32, 355-362.	1.7	59
310	Antagonism of type I interferon by flaviviruses. Biochemical and Biophysical Research Communications, 2017, 492, 587-596.	1.0	59
311	Mutations in the NS1 C-terminal tail do not enhance replication or virulence of the 2009 pandemic H1N1 influenza A virus. Journal of General Virology, 2010, 91, 1737-1742.	1.3	58
312	Pause on Avian Flu Transmission Research. Science, 2012, 335, 400-401.	6.0	58
313	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	1.5	58
314	Threonine 157 of Influenza Virus PA Polymerase Subunit Modulates RNA Replication in Infectious Viruses. Journal of Virology, 2003, 77, 6007-6013.	1.5	57
315	Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood, 2008, 112, 3671-3678.	0.6	57
316	Human Monoclonal Antibodies to Pandemic 1957 H2N2 and Pandemic 1968 H3N2 Influenza Viruses. Journal of Virology, 2012, 86, 6334-6340.	1.5	57
317	Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways. Trends in Microbiology, 2013, 21, 421-429.	3.5	57
318	The cytoplasmic tail of the neuraminidase protein of influenza A virus does not play an important role in the packaging of this protein into viral envelopes. Virus Research, 1995, 37, 37-47.	1.1	56
319	Experimental Infection of Pigs with the Human 1918 Pandemic Influenza Virus. Journal of Virology, 2009, 83, 4287-4296.	1.5	56
320	The Nucleoprotein of Newly Emerged H7N9 Influenza A Virus Harbors a Unique Motif Conferring Resistance to Antiviral Human MxA. Journal of Virology, 2015, 89, 2241-2252.	1.5	56
321	Increased Viral Loads and Exacerbated Innate Host Responses in Aged Macaques Infected with the 2009 Pandemic H1N1 Influenza A Virus. Journal of Virology, 2012, 86, 11115-11127.	1.5	55
322	Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. International Journal of Cancer, 2004, 110, 15-21.	2.3	54
323	Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology, 2006, 344, 492-508.	1.1	54
324	Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology, 2007, 122, 28-37.	2.0	54

#	Article	IF	CITATIONS
325	A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology, 2007, 361, 229-241.	1.1	54
326	Insertion of a GFP Reporter Gene in Influenza Virus. Current Protocols in Microbiology, 2013, 29, Unit 15G.4.	6.5	54
327	Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export. Journal of Cell Biology, 2012, 196, 315-326.	2.3	53
328	Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection. PLoS ONE, 2016, 11, e0154366.	1.1	53
329	Zika Virus Alters DNA Methylation of Neural Genes in an Organoid Model of the Developing Human Brain. MSystems, 2018, 3, .	1.7	53
330	Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Reports, 2021, 35, 109133.	2.9	53
331	Pandemic 2009 H1N1 vaccine protects against 1918 Spanish influenza virus. Nature Communications, 2010, 1, 28.	5.8	52
332	Divergent H7 Immunogens Offer Protection from H7N9 Virus Challenge. Journal of Virology, 2014, 88, 3976-3985.	1.5	52
333	mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection. Virology, 2014, 452-453, 175-190.	1.1	52
334	A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus. Vaccine, 2008, 26, 522-531.	1.7	51
335	Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. Journal of General Virology, 2010, 91, 2314-2321.	1.3	51
336	Type I Interferon Imposes a TSG101/ISG15 Checkpoint at the Golgi for Glycoprotein Trafficking during Influenza Virus Infection. Cell Host and Microbe, 2013, 14, 510-521.	5.1	51
337	Transcriptome Analysis of Infected and Bystander Type 2 Alveolar Epithelial Cells during Influenza A Virus Infection Reveals <i>In Vivo</i> Wnt Pathway Downregulation. Journal of Virology, 2018, 92, .	1.5	50
338	Apical Budding of a Recombinant Influenza A Virus Expressing a Hemagglutinin Protein with a Basolateral Localization Signal. Journal of Virology, 2002, 76, 3544-3553.	1.5	49
339	Strong interferon-inducing capacity of a highly virulent variant of influenza A virus strain PR8 with deletions in the NS1 gene. Journal of General Virology, 2009, 90, 2990-2994.	1.3	49
340	SARM Is Required for Neuronal Injury and Cytokine Production in Response to Central Nervous System Viral Infection. Journal of Immunology, 2013, 191, 875-883.	0.4	49
341	RNase L Targets Distinct Sites in Influenza A Virus RNAs. Journal of Virology, 2015, 89, 2764-2776.	1.5	49
342	Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. Journal of Virology, 2015, 89, 7401-7408.	1.5	49

#	Article	IF	CITATIONS
343	Interactive Big Data Resource to Elucidate Human Immune Pathways and Diseases. Immunity, 2015, 43, 605-614.	6.6	49
344	Immunization with Live Attenuated Influenza Viruses That Express Altered NS1 Proteins Results in Potent and Protective Memory CD8 ⁺ T-Cell Responses. Journal of Virology, 2010, 84, 1847-1855.	1.5	48
345	NS-based live attenuated H1N1 pandemic vaccines protect mice and ferrets. Vaccine, 2010, 28, 8015-8025.	1.7	48
346	Induction of Cross-Reactive Antibodies to Novel H7N9 Influenza Virus by Recombinant Newcastle Disease Virus Expressing a North American Lineage H7 Subtype Hemagglutinin. Journal of Virology, 2013, 87, 8235-8240.	1.5	48
347	Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection. MBio, 2017, 8, .	1.8	48
348	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	13.5	48
349	Influenza virus infection causes global RNAPII termination defects. Nature Structural and Molecular Biology, 2018, 25, 885-893.	3.6	48
350	Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Frontiers in Immunology, 2019, 10, 756.	2.2	48
351	Experimental re-infected cats do not transmit SARS-CoV-2. Emerging Microbes and Infections, 2021, 10, 638-650.	3.0	48
352	Influenza virus still surprises. Current Opinion in Microbiology, 2002, 5, 414-418.	2.3	47
353	Oncolysis of hepatic metastasis of colorectal cancer by recombinant vesicular stomatitis virus in immune-competent mice. Molecular Therapy, 2003, 8, 434-440.	3.7	47
354	RIG-I Detects mRNA of Intracellular Salmonella enterica Serovar Typhimurium during Bacterial Infection. MBio, 2014, 5, e01006-14.	1.8	47
355	What Can We Learn from Reconstructing the Extinct 1918 Pandemic Influenza Virus?. Immunity, 2006, 24, 121-124.	6.6	46
356	Pause on avian flu transmission studies. Nature, 2012, 481, 443-443.	13.7	46
357	Pandemic H1N1 Influenza Isolated from Free-Ranging Northern Elephant Seals in 2010 off the Central California Coast. PLoS ONE, 2013, 8, e62259.	1.1	46
358	OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Reports, 2020, 30, 1570-1584.e6.	2.9	46
359	Influenza B Virus Ribonucleoprotein Is a Potent Activator of the Antiviral Kinase PKR. PLoS Pathogens, 2009, 5, e1000473.	2.1	45
360	ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Reports, 2018, 25, 2784-2796.e3.	2.9	45

#	Article	IF	CITATIONS
361	Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nature Microbiology, 2020, 5, 1490-1503.	5.9	45
362	Sterilizing Immunity against SARSâ€CoVâ€2 Infection in Mice by a Single‣hot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonistâ€Adjuvanted Recombinant Spike Protein Vaccine**. Angewandte Chemie - International Edition, 2021, 60, 9467-9473.	7.2	45
363	A Common Polymorphism in the Caspase Recruitment Domain of RIG-I Modifies the Innate Immune Response of Human Dendritic Cells. Journal of Immunology, 2010, 185, 424-432.	0.4	44
364	Genetic Requirement for Hemagglutinin Glycosylation and Its Implications for Influenza A H1N1 Virus Evolution. Journal of Virology, 2013, 87, 7539-7549.	1.5	44
365	Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nature Communications, 2017, 8, 1931.	5.8	44
366	Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. Journal of General Virology, 2005, 86, 2817-2821.	1.3	43
367	A Reassortment-Incompetent Live Attenuated Influenza Virus Vaccine for Protection against Pandemic Virus Strains. Journal of Virology, 2011, 85, 6832-6843.	1.5	43
368	A Transient Homotypic Interaction Model for the Influenza A Virus NS1 Protein Effector Domain. PLoS ONE, 2011, 6, e17946.	1.1	43
369	Newcastle Disease Virus Expressing a Dendritic Cell-Targeted HIV Gag Protein Induces a Potent Gag-Specific Immune Response in Mice. Journal of Virology, 2011, 85, 2235-2246.	1.5	42
370	Activation and regulation of pathogen sensor RIC-I. Cytokine and Growth Factor Reviews, 2014, 25, 513-523.	3.2	42
371	Mucosal Polyinosinic-Polycytidylic Acid Improves Protection Elicited by Replicating Influenza Vaccines via Enhanced Dendritic Cell Function and T Cell Immunity. Journal of Immunology, 2014, 193, 1324-1332.	0.4	42
372	Bat influenza viruses transmit among bats but are poorly adapted to non-bat species. Nature Microbiology, 2019, 4, 2298-2309.	5.9	42
373	Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. Journal of General Virology, 2009, 90, 2686-2694.	1.3	41
374	Structure and Dynamics of the Second CARD of Human RIG-I Provide Mechanistic Insights into Regulation of RIG-I Activation. Structure, 2012, 20, 2048-2061.	1.6	41
375	Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12797-12802.	3.3	41
376	Emergence and Evolution of Novel Reassortant Influenza A Viruses in Canines in Southern China. MBio, 2018, 9, .	1.8	41
377	A conserved influenza A virus nucleoprotein code controls specific viral genome packaging. Nature Communications, 2016, 7, 12861.	5.8	40
378	Structural basis for STAT2 suppression by flavivirus NS5. Nature Structural and Molecular Biology, 2020, 27, 875-885.	3.6	40

#	Article	IF	CITATIONS
379	Development of Novel Influenza Virus Vaccines and Vectors. Journal of Infectious Diseases, 1997, 176, S45-S49.	1.9	38
380	Induction of Protective Immunity against Malaria by Priming-Boosting Immunization with Recombinant Cold-Adapted Influenza and Modified Vaccinia Ankara Viruses Expressing a CD8 + -T-Cell Epitope Derived from the Circumsporozoite Protein of Plasmodium yoelii. Journal of Virology, 2003, 77, 11859-11866.	1.5	38
381	Loss of IL-7R and IL-15R Expression Is Associated with Disappearance of Memory T Cells in Respiratory Tract following Influenza Infection. Journal of Immunology, 2008, 180, 171-178.	0.4	38
382	Murine Coronavirus Delays Expression of a Subset of Interferon-Stimulated Genes. Journal of Virology, 2010, 84, 5656-5669.	1.5	38
383	Structural basis for influenza virus NS1 protein block of mRNA nuclear export. Nature Microbiology, 2019, 4, 1671-1679.	5.9	38
384	COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models. Nature Communications, 2021, 12, 6097.	5.8	38
385	Induction of Cellular Immune Responses to Simian Immunodeficiency Virus Gag by Two Recombinant Negative-Strand RNA Virus Vectors. Journal of Virology, 2004, 78, 9366-9375.	1.5	37
386	Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions. Journal of Virology, 2013, 87, 13868-13877.	1.5	37
387	ISG15 Regulates Peritoneal Macrophages Functionality against Viral Infection. PLoS Pathogens, 2013, 9, e1003632.	2.1	37
388	Expected and Unexpected Features of the Newly Discovered Bat Influenza A-like Viruses. PLoS Pathogens, 2015, 11, e1004819.	2.1	37
389	Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections. Journal of Virology, 2010, 84, 12058-12068.	1.5	36
390	Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. Journal of General Virology, 2012, 93, 2337-2345.	1.3	36
391	The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. Journal of General Virology, 2012, 93, 1261-1268.	1.3	36
392	Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Reports, 2022, 38, 110508.	2.9	36
393	Qualitatively Different Memory CD8+ T Cells Are Generated after Lymphocytic Choriomeningitis Virus and Influenza Virus Infections. Journal of Immunology, 2010, 185, 2182-2190.	0.4	35
394	Influenza Virus Sequence Feature Variant Type Analysis: Evidence of a Role for NS1 in Influenza Virus Host Range Restriction. Journal of Virology, 2012, 86, 5857-5866.	1.5	35
395	Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus. PLoS Pathogens, 2018, 14, e1007135.	2.1	35
396	Packaging of the Influenza Virus Genome Is Governed by a Plastic Network of RNA- and Nucleoprotein-Mediated Interactions. Journal of Virology, 2019, 93, .	1.5	35

#	Article	IF	CITATIONS
397	Lessons Learned from Reconstructing the 1918 Influenza Pandemic. Journal of Infectious Diseases, 2006, 194, S127-S132.	1.9	34
398	Influenza Virus Receptor Specificity. American Journal of Pathology, 2010, 176, 1584-1585.	1.9	34
399	Strain-Specific Contribution of NS1-Activated Phosphoinositide 3-Kinase Signaling to Influenza A Virus Replication and Virulence. Journal of Virology, 2012, 86, 5366-5370.	1.5	34
400	Transmission Studies Resume for Avian Flu. Science, 2013, 339, 520-521.	6.0	34
401	ISG15 Is Counteracted by Vaccinia Virus E3 Protein and Controls the Proinflammatory Response against Viral Infection. Journal of Virology, 2014, 88, 2312-2318.	1.5	34
402	The therapeutic effect of death: Newcastle disease virus and its antitumor potential. Virus Research, 2015, 209, 56-66.	1.1	34
403	The Morphology and Composition of Influenza A Virus Particles Are Not Affected by Low Levels of M1 and M2 Proteins in Infected Cells. Journal of Virology, 2005, 79, 7926-7932.	1.5	33
404	Taxol Increases the Amount and T Cell–Activating Ability of Self-Immune Stimulatory Multimolecular Complexes Found in Ovarian Cancer Cells. Cancer Research, 2007, 67, 8378-8387.	0.4	33
405	RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus. Journal of Virology, 2015, 89, 10219-10229.	1.5	33
406	Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets following Influenza Virus Infection. Journal of Virology, 2016, 90, 7991-8004.	1.5	33
407	Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model. Journal of Virology, 2017, 91, .	1.5	33
408	Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell, 2020, 181, 1502-1517.e23.	13.5	33
409	Chimeric Hemagglutinin-Based Influenza Virus Vaccines Induce Protective Stalk-Specific Humoral Immunity and Cellular Responses in Mice. ImmunoHorizons, 2019, 3, 133-148.	0.8	33
410	Chimeric Influenza A Viruses with a Functional Influenza B Virus Neuraminidase or Hemagglutinin. Journal of Virology, 2003, 77, 9116-9123.	1.5	32
411	The NS1 protein of influenza A virus suppresses interferon-regulated activation of antigen-presentation and immune-proteasome pathways. Journal of General Virology, 2011, 92, 2093-2104.	1.3	32
412	Contribution of Double-Stranded RNA and CPSF30 Binding Domains of Influenza Virus NS1 to the Inhibition of Type I Interferon Production and Activation of Human Dendritic Cells. Journal of Virology, 2013, 87, 2430-2440.	1.5	32
413	Computer-Aided Discovery and Characterization of Novel Ebola Virus Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 3582-3594.	2.9	32
414	Passenger Mutations Confound Phenotypes of SARM1-Deficient Mice. Cell Reports, 2020, 31, 107498.	2.9	32

#	Article	IF	CITATIONS
415	Tissue-based SARS-CoV-2 detection in fatal COVID-19 infections: Sustained direct viral-induced damage is not necessary to drive disease progression. Human Pathology, 2021, 114, 110-119.	1.1	32
416	Safety and Immunogenicity of a Newcastle Disease Virus Vector-Based SARS-CoV-2 Vaccine Candidate, AVX/COVID-12-HEXAPRO (Patria), in Pigs. MBio, 2021, 12, e0190821.	1.8	32
417	Memory CD8+T Cell Responses Expand When Antigen Presentation Overcomes T Cell Self-Regulation. Journal of Immunology, 2008, 180, 64-71.	0.4	31
418	17β-Estradiol Protects Primary Macrophages Against HIV Infection Through Induction of Interferon-Alpha. Viral Immunology, 2014, 27, 140-150.	0.6	31
419	Novel triple-reassortant influenza viruses in pigs, Guangxi, China. Emerging Microbes and Infections, 2018, 7, 1-9.	3.0	31
420	Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Scientific Reports, 2021, 11, 12310.	1.6	31
421	Host Modulators of H1N1 Cytopathogenicity. PLoS ONE, 2012, 7, e39284.	1.1	31
422	Extrapulmonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Archives of Virology, 2010, 155, 905-914.	0.9	29
423	The neuraminidase of bat influenza viruses is not a neuraminidase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18635-18636.	3.3	29
424	HIV Vpu Interferes with NF-κB Activity but Not with Interferon Regulatory Factor 3. Journal of Virology, 2015, 89, 9781-9790.	1.5	29
425	Gut microbiota manipulation during the prepubertal period shapes behavioral abnormalities in a mouse neurodevelopmental disorder model. Scientific Reports, 2020, 10, 4697.	1.6	29
426	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	2.1	29
427	ACE2-lgG1 fusions with improved inÂvitro and inÂvivo activity against SARS-CoV-2. lScience, 2022, 25, 103670.	1.9	29
428	Proteins of newcastle disease virus envelope: interaction between the outer hemagglutinin-neuraminidase glycoprotein and the inner non-glycosylated matrix protein. BBA - Proteins and Proteomics, 1989, 999, 171-175.	2.1	28
429	Transfectant Influenza A Viruses Are Effective Recombinant Immunogens in the Treatment of Experimental Cancer. Virology, 1998, 249, 89-97.	1.1	28
430	Activation of Tumor Antigen-Specific Cytotoxic T Lymphocytes (CTLs) by Human Dendritic Cells Infected with an Attenuated Influenza A Virus Expressing a CTL Epitope Derived from the HER-2/neu Proto-Oncogene. Journal of Virology, 2003, 77, 7411-7424.	1.5	28
431	Vicious circle: systemic autoreactivity in Ro52/TRIM21-deficient mice. Journal of Experimental Medicine, 2009, 206, 1647-1651.	4.2	28
432	Novel vaccine strategies against emerging viruses. Current Opinion in Virology, 2013, 3, 210-216.	2.6	28

#	Article	IF	CITATIONS
433	Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian influenza H9N2 virus challenge. Vaccine, 2016, 34, 2537-2545.	1.7	28
434	Protection against influenza infection requires early recognition by inflammatory dendritic cells through C-type lectin receptor SIGN-R1. Nature Microbiology, 2019, 4, 1930-1940.	5.9	28
435	Prostate Tumor Cells Infected with a Recombinant Influenza Virus Expressing a Truncated NS1 Protein Activate Cytolytic CD8 + Cells To Recognize Noninfected Tumor Cells. Journal of Virology, 2006, 80, 383-394.	1.5	27
436	5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication. Virology Journal, 2010, 7, 102.	1.4	27
437	Identification of Small Molecules with Type I Interferon Inducing Properties by High-Throughput Screening. PLoS ONE, 2012, 7, e49049.	1.1	27
438	Mutations to PB2 and NP Proteins of an Avian Influenza Virus Combine To Confer Efficient Growth in Primary Human Respiratory Cells. Journal of Virology, 2014, 88, 13436-13446.	1.5	27
439	Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses. Journal of Virology, 2015, 89, 10190-10205.	1.5	27
440	Distinct Patterns of B-Cell Activation and Priming by Natural Influenza Virus Infection Versus Inactivated Influenza Vaccination. Journal of Infectious Diseases, 2015, 211, 1051-1059.	1.9	27
441	Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Frontiers in Microbiology, 2019, 10, 2862.	1.5	27
442	Virusâ€induced autophagic degradation of <scp>STAT</scp> 2 as a mechanism for interferon signaling blockade. EMBO Reports, 2019, 20, e48766.	2.0	27
443	TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nature Immunology, 2021, 22, 497-509.	7.0	27
444	Protective Cellular Immunity Against Influenza Virus Induced by Plasmid Inoculation of Newborn Mice. Autoimmunity, 1998, 5, 197-210.	0.6	26
445	Cutting Edge: A Potent Adjuvant Effect of Ligand to Receptor Activator of NF-κB Gene for Inducing Antigen-Specific CD8+ T Cell Response by DNA and Viral Vector Vaccination. Journal of Immunology, 2003, 171, 6344-6348.	0.4	26
446	Contribution of NS1 Effector Domain Dimerization to Influenza A Virus Replication and Virulence. Journal of Virology, 2012, 86, 13095-13098.	1.5	26
447	Immunologic Characterization of a Rhesus Macaque H1N1 Challenge Model for Candidate Influenza Virus Vaccine Assessment. Vaccine Journal, 2014, 21, 1668-1680.	3.2	26
448	Distinct Cross-reactive B-Cell Responses to Live Attenuated and Inactivated Influenza Vaccines. Journal of Infectious Diseases, 2014, 210, 865-874.	1.9	26
449	Lung Cancer and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Identifying Important Knowledge Gaps for Investigation. Journal of Thoracic Oncology, 2022, 17, 214-227.	0.5	26
450	Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Science Alliance, 2022, 5, e202101200.	1.3	26

#	Article	lF	CITATIONS
451	Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomised, placebo-controlled, phase 1 trial. EClinicalMedicine, 2022, 45, 101323.	3.2	26
452	Enhanced cellular immune responses to SIV Gag by immunization with influenza and vaccinia virus recombinants. Vaccine, 2003, 21, 2097-2106.	1.7	25
453	Influenza A viruses and PI3K. Virulence, 2012, 3, 411-414.	1.8	25
454	Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nature Microbiology, 2017, 2, 17022.	5.9	25
455	Activity of human serum antibodies in an influenza virus hemagglutinin stalk-based ADCC reporter assay correlates with activity in a CD107a degranulation assay. Vaccine, 2020, 38, 1953-1961.	1.7	25
456	Gain-of-Function Experiments on H7N9. Science, 2013, 341, 612-613.	6.0	24
457	Tumor Suppressor Cylindromatosis (CYLD) Controls HIV Transcription in an NF-κB-Dependent Manner. Journal of Virology, 2014, 88, 7528-7540.	1.5	24
458	Turkey Versus Guinea Pig Red Blood Cells: Hemagglutination Differences Alter Hemagglutination Inhibition Responses Against Influenza A/H1N1. Viral Immunology, 2014, 27, 174-178.	0.6	23
459	Inactivated influenza virus vaccines: the future of TIV and QIV. Current Opinion in Virology, 2017, 23, 102-106.	2.6	23
460	Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus. Npj Vaccines, 2017, 2, 33.	2.9	23
461	Influenza Virus NS1 Protein-RNA Interactome Reveals Intron Targeting. Journal of Virology, 2018, 92, .	1.5	23
462	Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nature Microbiology, 2021, 6, 1319-1333.	5.9	23
463	A Potent Anti-influenza Compound Blocks Fusion through Stabilization of the Prefusion Conformation of the Hemagglutinin Protein. ACS Infectious Diseases, 2015, 1, 98-109.	1.8	22
464	Modifications of the PSAP region of the matrix protein lead to attenuation of vesicular stomatitis virus in vitro and in vivo. Journal of General Virology, 2007, 88, 2559-2567.	1.3	21
465	Residue Y161 of Influenza Virus Hemagglutinin Is Involved in Viral Recognition of Sialylated Complexes from Different Hosts. Journal of Virology, 2012, 86, 4455-4462.	1.5	21
466	Influenza Vaccines: A Moving Interdisciplinary Field. Viruses, 2014, 6, 3809-3826.	1.5	21
467	Structural–functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12218-E12227.	3.3	21
468	Human interactome of the influenza B virus NS1 protein. Journal of General Virology, 2017, 98, 2267-2273.	1.3	21

#	Article	IF	CITATIONS
469	Susceptibility of sheep to experimental co-infection with the ancestral lineage of SARS-CoV-2 and its alpha variant. Emerging Microbes and Infections, 2022, 11, 662-675.	3.0	21
470	Modeling SARS-CoV-2: Comparative Pathology in Rhesus Macaque and Golden Syrian Hamster Models. Toxicologic Pathology, 2022, 50, 280-293.	0.9	21
471	Attacking the flu: New prospects for the rational design of antivirals. Nature Medicine, 2009, 15, 1253-1254.	15.2	20
472	Enhancement of the Proapoptotic Properties of Newcastle Disease Virus Promotes Tumor Remission in Syngeneic Murine Cancer Models. Molecular Cancer Therapeutics, 2015, 14, 1247-1258.	1.9	20
473	Newcastle Disease Virus (NDV) Oncolytic Activity in Human Glioma Tumors Is Dependent on CDKN2A-Type I IFN Gene Cluster Codeletion. Cells, 2020, 9, 1405.	1.8	20
474	Loss of Sendai virus C protein leads to accumulation of RIG-I immunostimulatory defective interfering RNA. Journal of General Virology, 2017, 98, 1282-1293.	1.3	20
475	Increased influenza A virus sialidase activity with N-acetyl-9-O-acetylneuraminic acid-containing substrates resulting from influenza C virus O-acetylesterase action. Virus Research, 1992, 25, 145-153.	1.1	19
476	Mapping of the RNA promoter of Newcastle disease virus. Virology, 2005, 331, 396-406.	1.1	19
477	Sequence analysis and receptor specificity of the hemagglutinin of a recent influenza H2N2 virus isolated from chicken in North America. Glycoconjugate Journal, 2006, 23, 93-99.	1.4	19
478	miR-122 is more than a shield for the hepatitis C virus genome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1571-1572.	3.3	19
479	Single-cell analysis of early antiviral gene expression reveals a determinant of stochastic <i>IFNB1</i> expression. Integrative Biology (United Kingdom), 2017, 9, 857-867.	0.6	19
480	Broad Spectrum Inhibitor of Influenza A and B Viruses Targeting the Viral Nucleoprotein. ACS Infectious Diseases, 2018, 4, 146-157.	1.8	19
481	Moving from Empirical to Rational Vaccine Design in the â€~Omics' Era. Vaccines, 2019, 7, 89.	2.1	19
482	Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera. Nature Communications, 2022, 13, .	5.8	19
483	Mucosal immunization with attenuated Shigella flexneri harboring an influenza hemagglutinin DNA vaccine protects mice against a lethal influenza challenge. Virology, 2004, 325, 192-199.	1.1	18
484	Major Histocompatibility Complex Class II Expression and Hemagglutinin Subtype Influence the Infectivity of Type A Influenza Virus for Respiratory Dendritic Cells. Journal of Virology, 2011, 85, 11955-11963.	1.5	18
485	Induction of Type I Interferon Secretion through Recombinant Newcastle Disease Virus Expressing Measles Virus Hemagglutinin Stimulates Antibody Secretion in the Presence of Maternal Antibodies. Journal of Virology, 2011, 85, 200-207.	1.5	18
486	Transmission studies resume for avian flu. Nature, 2013, 493, 609-609.	13.7	18

#	Article	IF	CITATIONS
487	Rescue of Recombinant Newcastle Disease Virus from cDNA. Journal of Visualized Experiments, 2013, , .	0.2	18
488	Host-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism. Journal of Virology, 2019, 93,	1.5	18
489	Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts. Npj Vaccines, 2019, 4, 51.	2.9	18
490	Pre-existing Hemagglutinin Stalk Antibodies Correlate with Protection of Lower Respiratory Symptoms in Flu-Infected Transplant Patients. Cell Reports Medicine, 2020, 1, 100130.	3.3	18
491	A Genome-Wide CRISPR-Cas9 Screen Reveals the Requirement of Host Cell Sulfation for Schmallenberg Virus Infection. Journal of Virology, 2020, 94, .	1.5	18
492	Accumulation of CD11b+Gr-1+ cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses. Archives of Virology, 2013, 158, 1305-1322.	0.9	17
493	STAT2 signaling and dengue virus infection. Jak-stat, 2014, 3, e27715.	2.2	17
494	Model of influenza A virus infection: Dynamics of viral antagonism and innate immune response. Journal of Theoretical Biology, 2014, 351, 47-57.	0.8	17
495	Differential Requirement for the IKKβ/NF-κB Signaling Module in Regulating TLR- versus RLR-Induced Type 1 IFN Expression in Dendritic Cells. Journal of Immunology, 2014, 193, 2538-2545.	0.4	17
496	African Swine Fever Virus Induces STAT1 and STAT2 Degradation to Counteract IFN-I Signaling. Frontiers in Microbiology, 2021, 12, 722952.	1.5	17
497	Functional Effects of Cardiomyocyte Injury in COVID-19. Journal of Virology, 2022, 96, JVI0106321.	1.5	17
498	Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Molecular Cell, 2022, 82, 2871-2884.e6.	4.5	17
499	A novel highâ€ŧhroughput cellâ€based method for integrated quantification of type I interferons and in vitro screening of immunostimulatory RNA drug delivery. Biotechnology and Bioengineering, 2009, 103, 664-675.	1.7	16
500	Development and Characterization of a Highly Specific and Sensitive SYBR Green Reverse Transcriptase PCR Assay for Detection of the 2009 Pandemic H1N1 Influenza Virus on the Basis of Sequence Signatures. Journal of Clinical Microbiology, 2011, 49, 335-344.	1.8	16
501	2 methylate or not 2 methylate: viral evasion of the type I interferon response. Nature Immunology, 2011, 12, 114-115.	7.0	16
502	Attenuated Influenza Virus Construct with Enhanced Hemagglutinin Protein Expression. Journal of Virology, 2012, 86, 5782-5790.	1.5	16
503	Comparison of Heterologous Prime-Boost Strategies against Human Immunodeficiency Virus Type 1 Gag Using Negative Stranded RNA Viruses. PLoS ONE, 2013, 8, e67123.	1.1	16
504	Unanchored ubiquitin in virus uncoating. Science, 2014, 346, 427-428.	6.0	16

#	Article	IF	CITATIONS
505	Novel Bat Influenza Virus NS1 Proteins Bind Double-Stranded RNA and Antagonize Host Innate Immunity. Journal of Virology, 2015, 89, 10696-10701.	1.5	16
506	The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.	2.9	16
507	The Pause on Avian H5N1 Influenza Virus Transmission Research Should Be Ended. MBio, 2012, 3, .	1.8	15
508	Mouse Dendritic Cell (DC) Influenza Virus Infectivity Is Much Lower than That for Human DCs and Is Hemagglutinin Subtype Dependent. Journal of Virology, 2013, 87, 1916-1918.	1.5	15
509	Interference of viral effector proteins with chromatin, transcription, and the epigenome. Current Opinion in Microbiology, 2015, 26, 123-129.	2.3	15
510	Induction and Evasion of Type-I Interferon Responses during Influenza A Virus Infection. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038414.	2.9	15
511	Zika virus NS3 protease induces bone morphogenetic protein-dependent brain calcification in human fetuses. Nature Microbiology, 2021, 6, 455-466.	5.9	15
512	Safety and immunogenicity of an egg-based inactivated Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomized, placebo-controlled, phase 1/2 trial in Vietnam. Vaccine, 2022, 40, 3621-3632.	1.7	15
513	A Novel Paramyxovirus?. Emerging Infectious Diseases, 2005, 11, 108-112.	2.0	14
514	Delivery of Chlamydiavaccines. Expert Opinion on Drug Delivery, 2005, 2, 549-562.	2.4	14
515	The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer's disease. Journal of Translational Medicine, 2011, 9, 127.	1.8	14
516	Recombinant Influenza A Viruses with Enhanced Levels of PB1 and PA Viral Protein Expression. Journal of Virology, 2012, 86, 5926-5930.	1.5	14
517	Lessons from Lipids in the Fight against Influenza. Cell, 2013, 154, 22-23.	13.5	14
518	North American Triple Reassortant and Eurasian H1N1 Swine Influenza Viruses Do Not Readily Reassort to Generate a 2009 Pandemic H1N1-Like Virus. MBio, 2014, 5, e00919-13.	1.8	14
519	Against the clock towards new Ebola virus therapies. Virus Research, 2015, 209, 4-10.	1.1	14
520	Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines, 2021, 9, 40.	2.1	14
521	Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats. Frontiers in Immunology, 2021, 12, 791764.	2.2	14
522	Trivalent NDV-HXP-S Vaccine Protects against Phylogenetically Distant SARS-CoV-2 Variants of Concern in Mice. Microbiology Spectrum, 2022, 10, .	1.2	14

#	Article	IF	CITATIONS
523	Transfectant influenza viruses as antigen delivery vectors. Advances in Virus Research, 2000, 55, 579-597.	0.9	13
524	Induction of immunological memory in baboons primed with DNA vaccine as neonates. Vaccine, 2001, 19, 1960-1967.	1.7	13
525	PKR Is Not Required for Interferon-Î ³ Inhibition of VSV Replication in Neurons. Viral Immunology, 2003, 16, 87-96.	0.6	13
526	Sensing RNA virus infections. , 2007, 3, 20-21.		13
527	Host-Range Restriction of Vaccinia Virus E3L Deletion Mutant Can Be Overcome In Vitro, but Not In Vivo, by Expression of the Influenza Virus NS1 Protein. PLoS ONE, 2011, 6, e28677.	1.1	13
528	Prothymosin $\hat{I}\pm$ Variants Isolated From CD8+ T Cells and Cervicovaginal Fluid Suppress HIV-1 Replication Through Type I Interferon Induction. Journal of Infectious Diseases, 2015, 211, 1467-1475.	1.9	13
529	Characterization of swine-origin H1N1 canine influenza viruses. Emerging Microbes and Infections, 2019, 8, 1017-1026.	3.0	13
530	Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase. Advances in Virology, 2019, 2019, 1-11.	0.5	13
531	Viral Fitness Landscapes in Diverse Host Species Reveal Multiple Evolutionary Lines for the NS1 Gene of Influenza A Viruses. Cell Reports, 2019, 29, 3997-4009.e5.	2.9	13
532	FACSâ€Mediated Isolation of Neuronal Cell Populations From Virusâ€Infected Human Embryonic Stem Cell–Derived Cerebral Organoid Cultures. Current Protocols in Stem Cell Biology, 2019, 48, e65.	3.0	13
533	Coronavirus disease 2019 (COVID-19) hospitalized patients with acute kidney injury treated with acute peritoneal dialysis do not have infectious peritoneal dialysis effluent. Kidney International, 2020, 98, 782.	2.6	13
534	IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization. Journal of Experimental Medicine, 2021, 218, .	4.2	13
535	Effect of Cholecalciferol Supplementation on Inflammation and Cellular Alloimmunity in Hemodialysis Patients: Data from a Randomized Controlled Pilot Trial. PLoS ONE, 2014, 9, e109998.	1.1	13
536	Comparison of biological and physical properties of human and animal A(H1N1) influenza viruses. Research in Virology, 1989, 140, 395-404.	0.7	12
537	A RIG-I 2CARD-MAVS200 Chimeric Protein Reconstitutes IFN-β Induction and Antiviral Response in Models Deficient in Type I IFN Response. Journal of Innate Immunity, 2015, 7, 466-481.	1.8	12
538	SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Scientific Reports, 2018, 8, 2092.	1.6	12
539	A viral-vectored RSV vaccine induces long-lived humoral immunity in cotton rats. Vaccine, 2018, 36, 3842-3852.	1.7	12
540	Human Monoclonal Antibodies Potently Neutralize Zika Virus and Select for Escape Mutations on the Lateral Ridge of the Envelope Protein. Journal of Virology, 2019, 93, .	1.5	12

#	Article	IF	CITATIONS
541	Differential Modulation of Innate Immune Responses in Human Primary Cells by Influenza A Viruses Carrying Human or Avian Nonstructural Protein 1. Journal of Virology, 2019, 94, .	1.5	12
542	Host–pathogen interactions. Current Opinion in Immunology, 2010, 22, 425-427.	2.4	11
543	An Enzymatic Assay for Detection of Viral Entry. Current Protocols in Cell Biology, 2011, 51, Unit 26.12.	2.3	11
544	Influenza A(H1N1)pdm09 virus infection in marine mammals in California. Emerging Microbes and Infections, 2013, 2, 1-2.	3.0	11
545	Mapping of the interaction domains of the Crimean–Congo hemorrhagic fever virus nucleocapsid protein. Journal of General Virology, 2015, 96, 524-537.	1.3	11
546	Specific Mutations in the PB2 Protein of Influenza A Virus Compensate for the Lack of Efficient Interferon Antagonism of the NS1 Protein of Bat Influenza A-Like Viruses. Journal of Virology, 2018, 92,	1.5	11
547	A Universal Influenza Virus Vaccine Candidate Tested in a Pig Vaccination-Infection Model in the Presence of Maternal Antibodies. Vaccines, 2018, 6, 64.	2.1	11
548	Chemical intervention of influenza virus mRNA nuclear export. PLoS Pathogens, 2020, 16, e1008407.	2.1	11
549	Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. MBio, 2021, 12, .	1.8	11
550	Longitudinal COVID-19-vaccination-induced antibody responses and Omicron neutralization in patients with lung cancer. Cancer Cell, 2022, 40, 575-577.	7.7	11
551	H5N1, a wealth of knowledge to improve pandemic preparedness. Virus Research, 2013, 178, 1-2.	1.1	10
552	Infection in Health Personnel with High and Low Levels of Exposure in a Hospital Setting during the H1N1 2009 Influenza A Pandemic. PLoS ONE, 2016, 11, e0147271.	1.1	10
553	Antiviral innate immunity through the lens of systems biology. Virus Research, 2016, 218, 10-17.	1.1	10
554	Varying Inoculum Dose to Assess the Roles of the Immune Response and Target Cell Depletion by the Pathogen in Control of Acute Viral Infections. Bulletin of Mathematical Biology, 2020, 82, 35.	0.9	10
555	Reactogenicity, safety, and immunogenicity of chimeric haemagglutinin influenza split-virion vaccines, adjuvanted with AS01 or AS03 or non-adjuvanted: a phase 1–2 randomised controlled trial. Lancet Infectious Diseases, The, 2022, 22, 1062-1075.	4.6	10
556	Increased serum N-acetyl-?-d-glucosaminidase and ?-ddd-mannosidase activities in obese subjects. The Clinical Investigator, 1992, 70, 880-4.	0.6	9
557	Preparation of genetically engineered A/H5N1 and A/H7N1 pandemic vaccine viruses by reverse genetics in a mixture of Vero and chicken embryo cells. Influenza and Other Respiratory Viruses, 2007, 1, 95-104.	1.5	9
558	1918 and 2009 H1N1 influenza viruses are not pathogenic in birds. Journal of General Virology, 2010, 91, 339-342.	1.3	9

#	Article	IF	CITATIONS
559	Host immune response–inspired development of the influenza vaccine. Annals of Allergy, Asthma and Immunology, 2020, 125, 28-35.	0.5	9
560	Mosaic Hemagglutinin-Based Whole Inactivated Virus Vaccines Induce Broad Protection Against Influenza B Virus Challenge in Mice. Frontiers in Immunology, 2021, 12, 746447.	2.2	9
561	Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals. BMC Molecular Biology, 2010, 11, 81.	3.0	8
562	Cytopathogenesis of Vesicular Stomatitis Virus Is Regulated by the PSAP Motif of M Protein in a Species-Dependent Manner. Viruses, 2012, 4, 1605-1618.	1.5	8
563	Working Safely with H5N1 Viruses. MBio, 2012, 3, e00049-12.	1.8	8
564	Systems vaccinology informs influenza vaccine immunogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1689-1691.	3.3	8
565	A novel SUMOylation site in the influenza a virus NS1 protein identified with a highly sensitive FRET assay. Journal of Biotechnology, 2020, 323, 121-127.	1.9	8
566	Non-sterilizing, Infection-Permissive Vaccination With Inactivated Influenza Virus Vaccine Reshapes Subsequent Virus Infection-Induced Protective Heterosubtypic Immunity From Cellular to Humoral Cross-Reactive Immune Responses. Frontiers in Immunology, 2020, 11, 1166.	2.2	8
567	Scalable, effective, and rapid decontamination of SARS-CoV-2 contaminated N95 respirators using germicidal ultraviolet C (UVC) irradiation device. Scientific Reports, 2021, 11, 19970.	1.6	8
568	Proteomic Identification of Potential Target Proteins of Cathepsin W for Its Development as a Drug Target for Influenza. Microbiology Spectrum, 2022, 10, .	1.2	8
569	The makings of a killer. Nature Medicine, 2002, 8, 927-928.	15.2	7
570	Substitutions T200A and E227A in the Hemagglutinin of Pandemic 2009 Influenza A Virus Increase Lethality but Decrease Transmission. Journal of Virology, 2013, 87, 6507-6511.	1.5	7
571	La Piedad Michoacán Mexico Virus V protein antagonizes type l interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Research, 2016, 213, 11-22.	1.1	7
572	Active opioid use does not attenuate the humoral responses to inactivated influenza vaccine. Vaccine, 2016, 34, 1363-1369.	1.7	7
573	Influenza B virus reverse genetic backbones with improved growth properties in the EB66® cell line as basis for vaccine seed virus generation. Vaccine, 2018, 36, 1146-1153.	1.7	7
574	TIV Vaccination Modulates Host Responses to Influenza Virus Infection that Correlate with Protection against Bacterial Superinfection. Vaccines, 2019, 7, 113.	2.1	7
575	A HER2-Displaying Virus-Like Particle Vaccine Protects from Challenge with Mammary Carcinoma Cells in a Mouse Model. Vaccines, 2019, 7, 41.	2.1	7
576	Influenza virus NS1- C/EBPβ gene regulatory complex inhibits RIG-I transcription. Antiviral Research, 2020, 176, 104747.	1.9	7

#	Article	IF	CITATIONS
577	Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Advanced Science, 2021, 8, e2100693.	5.6	7
578	Development of a Macrophage-Based ADCC Assay. Vaccines, 2021, 9, 660.	2.1	7
579	Aryl Sulfonamide Inhibits Entry and Replication of Diverse Influenza Viruses via the Hemagglutinin Protein. Journal of Medicinal Chemistry, 2021, 64, 10951-10966.	2.9	7
580	Interferon mediated prophylactic protection against respiratory viruses conferred by a prototype live attenuated influenza virus vaccine lacking non-structural protein 1. Scientific Reports, 2021, 11, 22164.	1.6	7
581	Predicting the pathogenesis of influenza from genomic response: a step toward early diagnosis. Genome Medicine, 2011, 3, 67.	3.6	6
582	Overcoming NS1-Mediated Immune Antagonism Involves Both Interferon-Dependent and Independent Mechanisms. Journal of Interferon and Cytokine Research, 2013, 33, 700-708.	0.5	6
583	The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice. Virus Research, 2014, 188, 97-102.	1.1	6
584	Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies. Vaccines, 2020, 8, 666.	2.1	6
585	Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. MBio, 2021, 12, e0097221.	1.8	6
586	Obesity and Metabolic Dysregulation in Children Provide Protective Influenza Vaccine Responses. Viruses, 2022, 14, 124.	1.5	6
587	Recombinant influenza virus vectors. Future Virology, 2007, 2, 401-416.	0.9	5
588	Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection. International Journal for Parasitology, 2010, 40, 1549-1561.	1.3	5
589	A Newly Emerged Swine-Origin Influenza A(H3N2) Variant Dampens Host Antiviral Immunity but Induces Potent Inflammasome Activation. Journal of Infectious Diseases, 2015, 212, 1923-1929.	1.9	5
590	STAT2 Limits Host Species Specificity of Human Metapneumovirus. Viruses, 2020, 12, 724.	1.5	5
591	Viral Determinants in H5N1 Influenza A Virus Enable Productive Infection of HeLa Cells. Journal of Virology, 2020, 94, .	1.5	5
592	Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. Journal of Interferon and Cytokine Research, 2021, 41, 205-219.	0.5	5
593	Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses, 2022, 14, 1107.	1.5	5
594	New Data on Influenza Virus Type C Confirm Its Peculiarities as a New Genus. Intervirology, 1991, 32, 325-326.	1.2	4

#	Article	IF	CITATIONS
595	A dual vaccine against influenza & Alzheimer's disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory. Journal of Neuroimmunology, 2014, 277, 77-84.	1.1	4
596	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	1.3	4
597	Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine. Microbiology Spectrum, 2022, 10, e0007822.	1.2	4
598	Protein-Protein Interactions in Membranes: A Simple Practical Laboratory Class for Advanced Students of Biochemistry and Molecular Biology. Biochemical Education, 1990, 18, 197-200.	0.1	3
599	Membrane glycoproteins of Newcastle disease virus: nucleotide sequence of the hemagglutinin-neuraminidase cloned gene and structure/function relationship of predicted amino acid sequence. Glycoconjugate Journal, 2001, 18, 283-289.	1.4	3
600	In Vivo Replication and Pathogenesis of Vesicular Stomatitis Virus Recombinant M40 Containing Ebola Virus L-Domain Sequences. Infectious Diseases: Research and Treatment, 2012, 5, IDRT.S10652.	0.7	3
601	Beneficial lessons from viruses. Nature, 2013, 494, 181-182.	13.7	3
602	Interferon Antagonists of Influenza Viruses. , 2005, , 95-114.		3
603	The Nuclear Factor-l̂®B Signaling Network: Insights from Systems Approaches. , 0, , 119-135.		3
604	Mass Cytometry Defines Virus-Specific CD4+ T Cells in Influenza Vaccination. ImmunoHorizons, 2020, 4, 774-788.	0.8	3
605	Three-stranded antiviral attack. ELife, 2014, 3, e02369.	2.8	3
606	Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production. Virology, 2022, 567, 65-76.	1.1	3
607	Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity. ACS Infectious Diseases, 2022, 8, 1265-1279.	1.8	3
608	Characterization of HIV-1 entry inhibitors with broad activity against R5 and X4 viral strains. Journal of Translational Medicine, 2015, 13, 107.	1.8	2
609	A High-Resolution Look at Influenza Virus Antigenic Drift. Journal of Infectious Diseases, 2016, 214, 982-982.	1.9	2
610	Live Visualization of Hemagglutinin Dynamics during Infection by Using a Novel Reporter Influenza A Virus. Viruses, 2020, 12, 687.	1.5	2
611	Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses, 2021, 13, 698.	1.5	2

35

#	Article	IF	CITATIONS
613	Bunyaviruses and Innate Immunity. , 0, , 287-299.		2
614	Interferons and Antiviral Action. , 0, , 91-106.		2
615	Togaviruses. , 0, , 353-372.		2
616	Series Introduction: New directions in vaccine research. Journal of Clinical Investigation, 2002, 109, 1517-1518.	3.9	2
617	Evolution of Influenza A Virus in Intensive and Free-Range Swine Farms in Spain. Virus Evolution, 2022, 7, veab099.	2.2	2
618	Profiling Selective Packaging of Host RNA and Viral RNA Modification in SARS-CoV-2 Viral Preparations. Frontiers in Cell and Developmental Biology, 2022, 10, 768356.	1.8	2
619	Stimulation of human T cells by an influenza A vector expressing a CTL epitope from the HER-2/neu protooncogene results in higher numbers of antigen-specific TCRhi cells than stimulation with peptide. Divergent roles of IL-2 and IL-15. Anticancer Research, 2005, 25, 715-24.	0.5	2
620	Right Ventricular Abnormality in Patients Hospitalized With COVID-19 Infection During Omicron Variant Surge. American Journal of Cardiology, 2022, 173, 158-160.	0.7	2
621	Avian Paramyxovirus 4 Antitumor Activity Leads to Complete Remissions and Long-term Protective Memory in Preclinical Melanoma and Colon Carcinoma Models. Cancer Research Communications, 2022, 2, 602-615.	0.7	2
622	Nuclear speckle integrity and function require TAO2 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
623	Timing of Influenza Vaccine Response in Patients That Receive Autologous Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, S143-S144.	2.0	1
624	Snatch-and-Grab Inhibitors to Fight the Flu. Cell, 2019, 177, 1367.	13.5	1
625	Editorial overview: Emerging viruses: interspecies transmission. Current Opinion in Virology, 2019, 34, iii-vi.	2.6	1
626	TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Human Vaccines and Immunotherapeutics, 2021, 17, 759-772.	1.4	1
627	Human Genetic Factors Involved in Viral Pathogenesis. , 0, , 177-193.		1
628	Filoviruses. , 0, , 229-246.		1
629	Suppression of Innate Immunity by Orthomyxoviruses. , 0, , 267-286.		1
630	Jak-Stat Pathway in Response to Virus Infection. , 0, , 75-90.		1

630 Jak-Stat Pathway in Response to Virus Infection. , 0, , 75-90.

#	Article	IF	CITATIONS
631	<i>Caliciviridae</i> and <i>Astroviridae</i> ., 0, , 389-402.		1
632	IGHV4-34 B-Cell Receptor Immunoglobulins from CLL Stereotyped Subset 4 React with Influenza A Virus: Requirement for IGHV-D-J/Iglv-J Rearrangement and Isotype Switching to IgG. Blood, 2014, 124, 299-299.	0.6	1
633	Protocol to isolate and assess spike protein cleavage in SARS-CoV-2 variants obtained from clinical COVID-19 samples. STAR Protocols, 2022, 3, 101502.	0.5	1
634	Pioneers of pathogenesis: past and present. Current Opinion in Virology, 2011, 1, 157-159.	2.6	0
635	Nairovirus Deubiquitinylating Peptidase. , 2013, , 2218-2224.		Ο
636	Editorial overview: Host-microbe interactions: viruses. Current Opinion in Microbiology, 2015, 26, v-vi.	2.3	0
637	Influenza forensics. , 2020, , 89-104.		0
638	A Cross-Reactive Mouse Monoclonal Antibody against Rhinovirus Mediates Phagocytosis In Vitro. Proceedings (mdpi), 2020, 50, .	0.2	0
639	Abstract S01-02: Assessing vulnerability of patients with lung cancer to SARS-CoV-2 infection based on serological antibody analyses. , 2021, , .		0
640	The Experts Speak: A New Feature in the JICR. Journal of Interferon and Cytokine Research, 2021, 41, 161-163.	0.5	0
641	An Interview with Adolfo Garcia-Sastre, PhD. Journal of Interferon and Cytokine Research, 2021, 41, 203-204.	0.5	0
642	Genomics serology to inform therapies and vaccines for arthritogenic alphaviruses. Proceedings of the United States of America, 2021, 118, .	3.3	0
643	Summary and Perspectives. , 0, , 423-427.		0
644	Rhabdoviruses and Mechanisms of Type I Interferon Antagonism. , 0, , 211-227.		0
645	Innate Immune Responses Elicited by Reovirus and Rotavirus. , 0, , 403-422.		0
646	Biological Impact of Type I Interferon Induction Pathways beyond Their Antivirus Activity. , 0, , 155-175.		0
647	Regulation of Innate Immunity by the Flaviviridae. , 0, , 317-333.		0
648	Interferon Regulatory Factors and the Atypical IKK-Related Kinases TBK1 and IKK-ε: Essential Players in the Innate Immune Response to RNA Virus Infection. , 0, , 51-74.		0

#	Article	IF	CITATIONS
649	Arenaviruses. , 0, , 301-315.		0
650	The Nuclear Factor-l [®] B Transcription Factor Pathway. , 0, , 107-118.		0
651	Inhibition of Antiviral Signaling Pathways by Paramyxovirus Proteins. , 0, , 247-265.		0
652	RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities. , 0, , 195-210.		0
653	Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses. , 0, , 7-27.		0
654	Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections. , 0, , 29-38.		0
655	Molecular basis for the exploitation of nuclear mRNA export by influenza A virus. FASEB Journal, 2020, 34, 1-1.	0.2	0
656	TIPICO XI: report of the first series and podcast on infectious diseases and vaccines (aTIPICO). Human Vaccines and Immunotherapeutics, 2021, 17, 4299-4327.	1.4	0
657	Human SUMOylation Pathway Is Critical for Influenza B Virus. Viruses, 2022, 14, 314.	1.5	0
658	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
659	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
660	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
661	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
662	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
663	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
664	Preclinical studies of the anti-tumor effects of novel Avian paramyxovirus 4 (APMV-4) oncolytic viral therapy combined with vascular endothelial growth factor-C (VEGF-C) in melanoma Journal of Clinical Oncology, 2022, 40, e15050-e15050.	0.8	0